|   | 
Details
   web
Record
Author Sergio Escalera; Oriol Pujol; Petia Radeva
Title On the Decoding Process in Ternary Error-Correcting Output Codes Type Journal Article
Year 2010 Publication IEEE on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 32 Issue 1 Pages 120–134
Keywords
Abstract A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-correcting output codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a ldquodo not carerdquo symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI machine learning repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes MILAB;HUPBA Approved no
Call Number BCNPCL @ bcnpcl @ EPR2010b Serial 1277
Permanent link to this record