toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title Predicting Missing Ratings in Recommender Systems: Adapted Factorization Approach Type Journal Article
  Year 2009 Publication International Journal of Electronic Commerce Abbreviated Journal  
  Volume 14 Issue (up) 1 Pages 89-108  
  Keywords  
  Abstract The paper presents a factorization-based approach to make predictions in recommender systems. These systems are widely used in electronic commerce to help customers find products according to their preferences. Taking into account the customer's ratings of some products available in the system, the recommender system tries to predict the ratings the customer would give to other products in the system. The proposed factorization-based approach uses all the information provided to compute the predicted ratings, in the same way as approaches based on Singular Value Decomposition (SVD). The main advantage of this technique versus SVD-based approaches is that it can deal with missing data. It also has a smaller computational cost. Experimental results with public data sets are provided to show that the proposed adapted factorization approach gives better predicted ratings than a widely used SVD-based approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1086-4415 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ JSL2009b Serial 1237  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: