toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Xavier Baro; Sergio Escalera; Jordi Vitria; Oriol Pujol; Petia Radeva edit  doi
  Title Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification Type Journal Article
  Year 2009 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 10 Issue 1 Pages 113–126  
  Abstract The high variability of sign appearance in uncontrolled environments has made the detection and classification of road signs a challenging problem in computer vision. In this paper, we introduce a novel approach for the detection and classification of traffic signs. Detection is based on a boosted detectors cascade, trained with a novel evolutionary version of Adaboost, which allows the use of large feature spaces. Classification is defined as a multiclass categorization problem. A battery of classifiers is trained to split classes in an Error-Correcting Output Code (ECOC) framework. We propose an ECOC design through a forest of optimal tree structures that are embedded in the ECOC matrix. The novel system offers high performance and better accuracy than the state-of-the-art strategies and is potentially better in terms of noise, affine deformation, partial occlusions, and reduced illumination.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;HuPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ BEV2008 Serial 1116  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: