toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Adriana Romero; Carlo Gatta; Gustavo Camps-Valls edit   pdf
doi  openurl
  Title Unsupervised Deep Feature Extraction for Remote Sensing Image Classification Type Journal Article
  Year 2016 Publication IEEE Transaction on Geoscience and Remote Sensing Abbreviated Journal TGRS  
  Volume 54 Issue 3 Pages 1349 - 1362  
  Keywords  
  Abstract This paper introduces the use of single-layer and deep convolutional networks for remote sensing data analysis. Direct application to multi- and hyperspectral imagery of supervised (shallow or deep) convolutional networks is very challenging given the high input data dimensionality and the relatively small amount of available labeled data. Therefore, we propose the use of greedy layerwise unsupervised pretraining coupled with a highly efficient algorithm for unsupervised learning of sparse features. The algorithm is rooted on sparse representations and enforces both population and lifetime sparsity of the extracted features, simultaneously. We successfully illustrate the expressive power of the extracted representations in several scenarios: classification of aerial scenes, as well as land-use classification in very high resolution or land-cover classification from multi- and hyperspectral images. The proposed algorithm clearly outperforms standard principal component analysis (PCA) and its kernel counterpart (kPCA), as well as current state-of-the-art algorithms of aerial classification, while being extremely computationally efficient at learning representations of data. Results show that single-layer convolutional networks can extract powerful discriminative features only when the receptive field accounts for neighboring pixels and are preferred when the classification requires high resolution and detailed results. However, deep architectures significantly outperform single-layer variants, capturing increasing levels of abstraction and complexity throughout the feature hierarchy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-2892 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.079;MILAB Approved no  
  Call Number Admin @ si @ RGC2016 Serial 2723  
Permanent link to this record
 

 
Author (up) Adriana Romero; Petia Radeva; Carlo Gatta edit  doi
openurl 
  Title Meta-parameter free unsupervised sparse feature learning Type Journal Article
  Year 2015 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 37 Issue 8 Pages 1716-1722  
  Keywords  
  Abstract We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on CIFAR-10, STL- 10 and UCMerced show that the method achieves the state-of-theart performance, providing discriminative features that generalize well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; 600.068; 600.079; 601.160 Approved no  
  Call Number Admin @ si @ RRG2014b Serial 2594  
Permanent link to this record
 

 
Author (up) Albert Clapes; Miguel Reyes; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Multi-modal User Identification and Object Recognition Surveillance System Type Journal Article
  Year 2013 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 34 Issue 7 Pages 799-808  
  Keywords Multi-modal RGB-Depth data analysis; User identification; Object recognition; Intelligent surveillance; Visual features; Statistical learning  
  Abstract We propose an automatic surveillance system for user identification and object recognition based on multi-modal RGB-Depth data analysis. We model a RGBD environment learning a pixel-based background Gaussian distribution. Then, user and object candidate regions are detected and recognized using robust statistical approaches. The system robustly recognizes users and updates the system in an online way, identifying and detecting new actors in the scene. Moreover, segmented objects are described, matched, recognized, and updated online using view-point 3D descriptions, being robust to partial occlusions and local 3D viewpoint rotations. Finally, the system saves the historic of user–object assignments, being specially useful for surveillance scenarios. The system has been evaluated on a novel data set containing different indoor/outdoor scenarios, objects, and users, showing accurate recognition and better performance than standard state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; 600.046; 605.203;MILAB Approved no  
  Call Number Admin @ si @ CRE2013 Serial 2248  
Permanent link to this record
 

 
Author (up) Alejandro Cartas; Juan Marin; Petia Radeva; Mariella Dimiccoli edit   pdf
url  openurl
  Title Batch-based activity recognition from egocentric photo-streams revisited Type Journal Article
  Year 2018 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 21 Issue 4 Pages 953–965  
  Keywords Egocentric vision; Lifelogging; Activity recognition; Deep learning; Recurrent neural networks  
  Abstract Wearable cameras can gather large amounts of image data that provide rich visual information about the daily activities of the wearer. Motivated by the large number of health applications that could be enabled by the automatic recognition of daily activities, such as lifestyle characterization for habit improvement, context-aware personal assistance and tele-rehabilitation services, we propose a system to classify 21 daily activities from photo-streams acquired by a wearable photo-camera. Our approach combines the advantages of a late fusion ensemble strategy relying on convolutional neural networks at image level with the ability of recurrent neural networks to account for the temporal evolution of high-level features in photo-streams without relying on event boundaries. The proposed batch-based approach achieved an overall accuracy of 89.85%, outperforming state-of-the-art end-to-end methodologies. These results were achieved on a dataset consists of 44,902 egocentric pictures from three persons captured during 26 days in average.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ CMR2018 Serial 3186  
Permanent link to this record
 

 
Author (up) Alejandro Cartas; Petia Radeva; Mariella Dimiccoli edit  url
doi  openurl
  Title Activities of Daily Living Monitoring via a Wearable Camera: Toward Real-World Applications Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 8 Issue Pages 77344 - 77363  
  Keywords  
  Abstract Activity recognition from wearable photo-cameras is crucial for lifestyle characterization and health monitoring. However, to enable its wide-spreading use in real-world applications, a high level of generalization needs to be ensured on unseen users. Currently, state-of-the-art methods have been tested only on relatively small datasets consisting of data collected by a few users that are partially seen during training. In this paper, we built a new egocentric dataset acquired by 15 people through a wearable photo-camera and used it to test the generalization capabilities of several state-of-the-art methods for egocentric activity recognition on unseen users and daily image sequences. In addition, we propose several variants to state-of-the-art deep learning architectures, and we show that it is possible to achieve 79.87% accuracy on users unseen during training. Furthermore, to show that the proposed dataset and approach can be useful in real-world applications, where data can be acquired by different wearable cameras and labeled data are scarcely available, we employed a domain adaptation strategy on two egocentric activity recognition benchmark datasets. These experiments show that the model learned with our dataset, can easily be transferred to other domains with a very small amount of labeled data. Taken together, those results show that activity recognition from wearable photo-cameras is mature enough to be tested in real-world applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ CRD2020 Serial 3436  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: