toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Xavier Perez Sala; Sergio Escalera; Cecilio Angulo; Jordi Gonzalez edit   pdf
doi  openurl
  Title A survey on model based approaches for 2D and 3D visual human pose recovery Type Journal Article
  Year (up) 2014 Publication Sensors Abbreviated Journal SENS  
  Volume 14 Issue 3 Pages 4189-4210  
  Keywords human pose recovery; human body modelling; behavior analysis; computer vision  
  Abstract Human Pose Recovery has been studied in the field of Computer Vision for the last 40 years. Several approaches have been reported, and significant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we define a general taxonomy to group model based approaches for Human Pose Recovery, which is composed of five main modules: appearance, viewpoint, spatial relations, temporal consistence, and behavior. Subsequently, a methodological comparison is performed following the proposed taxonomy, evaluating current SoA approaches in the aforementioned five group categories. As a result of this comparison, we discuss the main advantages and drawbacks of the reviewed literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; 600.046; 600.063; 600.078;MILAB Approved no  
  Call Number Admin @ si @ PEA2014 Serial 2443  
Permanent link to this record
 

 
Author Frederic Sampedro; Anna Domenech; Sergio Escalera edit  url
openurl 
  Title Obtaining quantitative global tumoral state indicators based on whole-body PET/CT scans: A breast cancer case study Type Journal Article
  Year (up) 2014 Publication Nuclear Medicine Communications Abbreviated Journal NMC  
  Volume 35 Issue 4 Pages 362-371  
  Keywords  
  Abstract Objectives: In this work we address the need for the computation of quantitative global tumoral state indicators from oncological whole-body PET/computed tomography scans. The combination of such indicators with other oncological information such as tumor markers or biopsy results would prove useful in oncological decision-making scenarios.

Materials and methods: From an ordering of 100 breast cancer patients on the basis of oncological state through visual analysis by a consensus of nuclear medicine specialists, a set of numerical indicators computed from image analysis of the PET/computed tomography scan is presented, which attempts to summarize a patient’s oncological state in a quantitative manner taking into consideration the total tumor volume, aggressiveness, and spread.

Results: Results obtained by comparative analysis of the proposed indicators with respect to the experts’ evaluation show up to 87% Pearson’s correlation coefficient when providing expert-guided PET metabolic tumor volume segmentation and 64% correlation when using completely automatic image analysis techniques.

Conclusion: Global quantitative tumor information obtained by whole-body PET/CT image analysis can prove useful in clinical nuclear medicine settings and oncological decision-making scenarios. The completely automatic computation of such indicators would improve its impact as time efficiency and specialist independence would be achieved.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number SDE2014a Serial 2444  
Permanent link to this record
 

 
Author Francesco Ciompi; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title ECOC-DRF: Discriminative random fields based on error correcting output codes Type Journal Article
  Year (up) 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 6 Pages 2193-2204  
  Keywords Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models  
  Abstract We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; HuPBA; MILAB; 605.203; 600.046; 601.043; 600.079 Approved no  
  Call Number Admin @ si @ CPR2014b Serial 2470  
Permanent link to this record
 

 
Author Frederic Sampedro; Anna Domenech; Sergio Escalera edit  url
doi  openurl
  Title Static and dynamic computational cancer spread quantification in whole body FDG-PET/CT scans Type Journal Article
  Year (up) 2014 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal JMIHI  
  Volume 4 Issue 6 Pages 825-831  
  Keywords CANCER SPREAD; COMPUTER AIDED DIAGNOSIS; MEDICAL IMAGING; TUMOR QUANTIFICATION  
  Abstract In this work we address the computational cancer spread quantification scenario in whole body FDG-PET/CT scans. At the static level, this setting can be modeled as a clustering problem on the set of 3D connected components of the whole body PET tumoral segmentation mask carried out by nuclear medicine physicians. At the dynamic level, and ad-hoc algorithm is proposed in order to quantify the cancer spread time evolution which, when combined with other existing indicators, gives rise to the metabolic tumor volume-aggressiveness-spread time evolution chart, a novel tool that we claim that would prove useful in nuclear medicine and oncological clinical or research scenarios. Good performance results of the proposed methodologies both at the clinical and technological level are shown using a dataset of 48 segmented whole body FDG-PET/CT scans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SDE2014b Serial 2548  
Permanent link to this record
 

 
Author Frederic Sampedro; Sergio Escalera; Anna Puig edit  doi
openurl 
  Title Iterative Multiclass Multiscale Stacked Sequential Learning: definition and application to medical volume segmentation Type Journal Article
  Year (up) 2014 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 46 Issue Pages 1-10  
  Keywords Machine learning; Sequential learning; Multi-class problems; Contextual learning; Medical volume segmentation  
  Abstract In this work we present the iterative multi-class multi-scale stacked sequential learning framework (IMMSSL), a novel learning scheme that is particularly suited for medical volume segmentation applications. This model exploits the inherent voxel contextual information of the structures of interest in order to improve its segmentation performance results. Without any feature set or learning algorithm prior assumption, the proposed scheme directly seeks to learn the contextual properties of a region from the predicted classifications of previous classifiers within an iterative scheme. Performance results regarding segmentation accuracy in three two-class and multi-class medical volume datasets show a significant improvement with respect to state of the art alternatives. Due to its easiness of implementation and its independence of feature space and learning algorithm, the presented machine learning framework could be taken into consideration as a first choice in complex volume segmentation scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SEP2014 Serial 2550  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: