toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Simone Balocco; Carlo Gatta; Oriol Pujol; J. Mauri; Petia Radeva edit  doi
openurl 
  Title SRBF: Speckle Reducing Bilateral Filtering Type Journal Article
  Year (up) 2010 Publication Ultrasound in Medicine and Biology Abbreviated Journal UMB  
  Volume 36 Issue 8 Pages 1353-1363  
  Keywords  
  Abstract Speckle noise negatively affects medical ultrasound image shape interpretation and boundary detection. Speckle removal filters are widely used to selectively remove speckle noise without destroying important image features to enhance object boundaries. In this article, a fully automatic bilateral filter tailored to ultrasound images is proposed. The edge preservation property is obtained by embedding noise statistics in the filter framework. Consequently, the filter is able to tackle the multiplicative behavior modulating the smoothing strength with respect to local statistics. The in silico experiments clearly showed that the speckle reducing bilateral filter (SRBF) has superior performances to most of the state of the art filtering methods. The filter is tested on 50 in vivo US images and its influence on a segmentation task is quantified. The results using SRBF filtered data sets show a superior performance to using oriented anisotropic diffusion filtered images. This improvement is due to the adaptive support of SRBF and the embedded noise statistics, yielding a more homogeneous smoothing. SRBF results in a fully automatic, fast and flexible algorithm potentially suitable in wide ranges of speckle noise sizes, for different medical applications (IVUS, B-mode, 3-D matrix array US).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ BGP2010 Serial 1314  
Permanent link to this record
 

 
Author Sergio Escalera; R. M. Martinez; Jordi Vitria; Petia Radeva; Maria Teresa Anguera edit   pdf
openurl 
  Title Deteccion automatica de la dominancia en conversaciones diadicas Type Journal Article
  Year (up) 2010 Publication Escritos de Psicologia Abbreviated Journal EP  
  Volume 3 Issue 2 Pages 41–45  
  Keywords Dominance detection; Non-verbal communication; Visual features  
  Abstract Dominance is referred to the level of influence that a person has in a conversation. Dominance is an important research area in social psychology, but the problem of its automatic estimation is a very recent topic in the contexts of social and wearable computing. In this paper, we focus on the dominance detection of visual cues. We estimate the correlation among observers by categorizing the dominant people in a set of face-to-face conversations. Different dominance indicators from gestural communication are defined, manually annotated, and compared to the observers' opinion. Moreover, these indicators are automatically extracted from video sequences and learnt by using binary classifiers. Results from the three analyses showed a high correlation and allows the categorization of dominant people in public discussion video sequences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1989-3809 ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; OR; MILAB;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ EMV2010 Serial 1315  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  url
doi  openurl
  Title Re-coding ECOCs without retraining Type Journal Article
  Year (up) 2010 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 31 Issue 7 Pages 555–562  
  Keywords  
  Abstract A standard way to deal with multi-class categorization problems is by the combination of binary classifiers in a pairwise voting procedure. Recently, this classical approach has been formalized in the Error-Correcting Output Codes (ECOC) framework. In the ECOC framework, the one-versus-one coding demonstrates to achieve higher performance than the rest of coding designs. The binary problems that we train in the one-versus-one strategy are significantly smaller than in the rest of designs, and usually easier to be learnt, taking into account the smaller overlapping between classes. However, a high percentage of the positions coded by zero of the coding matrix, which implies a high sparseness degree, does not codify meta-class membership information. In this paper, we show that using the training data we can redefine without re-training, in a problem-dependent way, the one-versus-one coding matrix so that the new coded information helps the system to increase its generalization capability. Moreover, the new re-coding strategy is generalized to be applied over any binary code. The results over several UCI Machine Learning repository data sets and two real multi-class problems show that performance improvements can be obtained re-coding the classical one-versus-one and Sparse random designs compared to different state-of-the-art ECOC configurations.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010e Serial 1338  
Permanent link to this record
 

 
Author Jose Seabra; Francesco Ciompi; Oriol Pujol; J. Mauri; Petia Radeva; Joao Sanchez edit  doi
openurl 
  Title Rayleigh Mixture Model for Plaque Characterization in Intravascular Ultrasound Type Journal Article
  Year (up) 2011 Publication IEEE Transactions on Biomedical Engineering Abbreviated Journal TBME  
  Volume 58 Issue 5 Pages 1314-1324  
  Keywords  
  Abstract Vulnerable plaques are the major cause of carotid and coronary vascular problems, such as heart attack or stroke. A correct modeling of plaque echomorphology and composition can help the identification of such lesions. The Rayleigh distribution is widely used to describe (nearly) homogeneous areas in ultrasound images. Since plaques may contain tissues with heterogeneous regions, more complex distributions depending on multiple parameters are usually needed, such as Rice, K or Nakagami distributions. In such cases, the problem formulation becomes more complex, and the optimization procedure to estimate the plaque echomorphology is more difficult. Here, we propose to model the tissue echomorphology by means of a mixture of Rayleigh distributions, known as the Rayleigh mixture model (RMM). The problem formulation is still simple, but its ability to describe complex textural patterns is very powerful. In this paper, we present a method for the automatic estimation of the RMM mixture parameters by means of the expectation maximization algorithm, which aims at characterizing tissue echomorphology in ultrasound (US). The performance of the proposed model is evaluated with a database of in vitro intravascular US cases. We show that the mixture coefficients and Rayleigh parameters explicitly derived from the mixture model are able to accurately describe different plaque types and to significantly improve the characterization performance of an already existing methodology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ SCP2011 Serial 1712  
Permanent link to this record
 

 
Author Maria Salamo; Sergio Escalera edit  openurl
  Title Increasing Retrieval Quality in Conversational Recommenders Type Journal Article
  Year (up) 2011 Publication IEEE Transactions on Knowledge and Data Engineering Abbreviated Journal TKDE  
  Volume 99 Issue Pages 1-1  
  Keywords  
  Abstract IF JCR CCIA 2.286 2009 24/103
JCR Impact Factor 2010: 1.851
A major task of research in conversational recommender systems is personalization. Critiquing is a common and powerful form of feedback, where a user can express her feature preferences by applying a series of directional critiques over the recommendations instead of providing specific preference values. Incremental Critiquing is a conversational recommender system that uses critiquing as a feedback to efficiently personalize products. The expectation is that in each cycle the system retrieves the products that best satisfy the user’s soft product preferences from a minimal information input. In this paper, we present a novel technique that increases retrieval quality based on a combination of compatibility and similarity scores. Under the hypothesis that a user learns Turing the recommendation process, we propose two novel exponential reinforcement learning approaches for compatibility that take into account both the instant at which the user makes a critique and the number of satisfied critiques. Moreover, we consider that the impact of features on the similarity differs according to the preferences manifested by the user. We propose a global weighting approach that uses a common weight for nearest cases in order to focus on groups of relevant products. We show that our methodology significantly improves recommendation efficiency in four data sets of different sizes in terms of session length in comparison with state-of-the-art approaches. Moreover, our recommender shows higher robustness against noisy user data when compared to classical approaches
 
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1041-4347 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA Approved no  
  Call Number Admin @ si @ SaE2011 Serial 1713  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: