|
Records |
Links |
|
Author |
Simone Balocco; Carlo Gatta; Oriol Pujol; J. Mauri; Petia Radeva |
|
|
Title |
SRBF: Speckle Reducing Bilateral Filtering |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Ultrasound in Medicine and Biology |
Abbreviated Journal |
UMB |
|
|
Volume |
36 |
Issue |
8 |
Pages |
1353-1363 |
|
|
Keywords |
|
|
|
Abstract |
Speckle noise negatively affects medical ultrasound image shape interpretation and boundary detection. Speckle removal filters are widely used to selectively remove speckle noise without destroying important image features to enhance object boundaries. In this article, a fully automatic bilateral filter tailored to ultrasound images is proposed. The edge preservation property is obtained by embedding noise statistics in the filter framework. Consequently, the filter is able to tackle the multiplicative behavior modulating the smoothing strength with respect to local statistics. The in silico experiments clearly showed that the speckle reducing bilateral filter (SRBF) has superior performances to most of the state of the art filtering methods. The filter is tested on 50 in vivo US images and its influence on a segmentation task is quantified. The results using SRBF filtered data sets show a superior performance to using oriented anisotropic diffusion filtered images. This improvement is due to the adaptive support of SRBF and the embedded noise statistics, yielding a more homogeneous smoothing. SRBF results in a fully automatic, fast and flexible algorithm potentially suitable in wide ranges of speckle noise sizes, for different medical applications (IVUS, B-mode, 3-D matrix array US). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HUPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ BGP2010 |
Serial |
1314 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; R. M. Martinez; Jordi Vitria; Petia Radeva; Maria Teresa Anguera |
|
|
Title |
Deteccion automatica de la dominancia en conversaciones diadicas |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Escritos de Psicologia |
Abbreviated Journal |
EP |
|
|
Volume |
3 |
Issue |
2 |
Pages |
41–45 |
|
|
Keywords |
Dominance detection; Non-verbal communication; Visual features |
|
|
Abstract |
Dominance is referred to the level of influence that a person has in a conversation. Dominance is an important research area in social psychology, but the problem of its automatic estimation is a very recent topic in the contexts of social and wearable computing. In this paper, we focus on the dominance detection of visual cues. We estimate the correlation among observers by categorizing the dominant people in a set of face-to-face conversations. Different dominance indicators from gestural communication are defined, manually annotated, and compared to the observers' opinion. Moreover, these indicators are automatically extracted from video sequences and learnt by using binary classifiers. Results from the three analyses showed a high correlation and allows the categorization of dominant people in public discussion video sequences. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1989-3809 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; OR; MILAB;MV |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EMV2010 |
Serial |
1315 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva |
|
|
Title |
Re-coding ECOCs without retraining |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
31 |
Issue |
7 |
Pages |
555–562 |
|
|
Keywords |
|
|
|
Abstract |
A standard way to deal with multi-class categorization problems is by the combination of binary classifiers in a pairwise voting procedure. Recently, this classical approach has been formalized in the Error-Correcting Output Codes (ECOC) framework. In the ECOC framework, the one-versus-one coding demonstrates to achieve higher performance than the rest of coding designs. The binary problems that we train in the one-versus-one strategy are significantly smaller than in the rest of designs, and usually easier to be learnt, taking into account the smaller overlapping between classes. However, a high percentage of the positions coded by zero of the coding matrix, which implies a high sparseness degree, does not codify meta-class membership information. In this paper, we show that using the training data we can redefine without re-training, in a problem-dependent way, the one-versus-one coding matrix so that the new coded information helps the system to increase its generalization capability. Moreover, the new re-coding strategy is generalized to be applied over any binary code. The results over several UCI Machine Learning repository data sets and two real multi-class problems show that performance improvements can be obtained re-coding the classical one-versus-one and Sparse random designs compared to different state-of-the-art ECOC configurations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HUPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2010e |
Serial |
1338 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Baro; Sergio Escalera; Jordi Vitria; Oriol Pujol; Petia Radeva |
|
|
Title |
Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification |
Type |
Journal Article |
|
Year |
2009 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
10 |
Issue |
1 |
Pages |
113–126 |
|
|
Keywords |
|
|
|
Abstract |
The high variability of sign appearance in uncontrolled environments has made the detection and classification of road signs a challenging problem in computer vision. In this paper, we introduce a novel approach for the detection and classification of traffic signs. Detection is based on a boosted detectors cascade, trained with a novel evolutionary version of Adaboost, which allows the use of large feature spaces. Classification is defined as a multiclass categorization problem. A battery of classifiers is trained to split classes in an Error-Correcting Output Code (ECOC) framework. We propose an ECOC design through a forest of optimal tree structures that are embedded in the ECOC matrix. The novel system offers high performance and better accuracy than the state-of-the-art strategies and is potentially better in terms of noise, affine deformation, partial occlusions, and reduced illumination. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
OR;MILAB;HuPBA;MV |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ BEV2008 |
Serial |
1116 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva |
|
|
Title |
Separability of Ternary Codes for Sparse Designs of Error-Correcting Output Codes |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
30 |
Issue |
3 |
Pages |
285–297 |
|
|
Keywords |
|
|
|
Abstract |
Error Correcting Output Codes (ECOC) represent a successful framework to deal with multi-class categorization problems based on combining binary classifiers. In this paper, we present a new formulation of the ternary ECOC distance and the error-correcting capabilities in the ternary ECOC framework. Based on the new measure, we stress on how to design coding matrices preventing codification ambiguity and propose a new Sparse Random coding matrix with ternary distance maximization. The results on the UCI Repository and in a real speed traffic categorization problem show that when the coding design satisfies the new ternary measures, significant performance improvement is obtained independently of the decoding strategy applied. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2009a |
Serial |
1153 |
|
Permanent link to this record |