toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Adrien Pavao; Isabelle Guyon; Anne-Catherine Letournel; Dinh-Tuan Tran; Xavier Baro; Hugo Jair Escalante; Sergio Escalera; Tyler Thomas; Zhen Xu edit  url
openurl 
  Title CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges Type Journal Article
  Year (down) 2023 Publication Journal of Machine Learning Research Abbreviated Journal JMLR  
  Volume Issue Pages  
  Keywords  
  Abstract CodaLab Competitions is an open source web platform designed to help data scientists and research teams to crowd-source the resolution of machine learning problems through the organization of competitions, also called challenges or contests. CodaLab Competitions provides useful features such as multiple phases, results and code submissions, multi-score leaderboards, and jobs running
inside Docker containers. The platform is very flexible and can handle large scale experiments, by allowing organizers to upload large datasets and provide their own CPU or GPU compute workers.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ PGL2023 Serial 3973  
Permanent link to this record
 

 
Author Anders Skaarup Johansen; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund edit  url
doi  openurl
  Title Who Cares about the Weather? Inferring Weather Conditions for Weather-Aware Object Detection in Thermal Images Type Journal Article
  Year (down) 2023 Publication Applied Sciences Abbreviated Journal AS  
  Volume 13 Issue 18 Pages  
  Keywords thermal; object detection; concept drift; conditioning; weather recognition  
  Abstract Deployments of real-world object detection systems often experience a degradation in performance over time due to concept drift. Systems that leverage thermal cameras are especially susceptible because the respective thermal signatures of objects and their surroundings are highly sensitive to environmental changes. In this study, two types of weather-aware latent conditioning methods are investigated. The proposed method aims to guide two object detectors, (YOLOv5 and Deformable DETR) to become weather-aware. This is achieved by leveraging an auxiliary branch that predicts weather-related information while conditioning intermediate layers of the object detector. While the conditioning methods proposed do not directly improve the accuracy of baseline detectors, it can be observed that conditioned networks manage to extract a weather-related signal from the thermal images, thus resulting in a decreased miss rate at the cost of increased false positives. The extracted signal appears noisy and is thus challenging to regress accurately. This is most likely a result of the qualitative nature of the thermal sensor; thus, further work is needed to identify an ideal method for optimizing the conditioning branch, as well as to further improve the accuracy of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ SNE2023 Serial 3983  
Permanent link to this record
 

 
Author Carlos Martin Isla; Victor M Campello; Cristian Izquierdo; Kaisar Kushibar; Carla Sendra Balcells; Polyxeni Gkontra; Alireza Sojoudi; Mitchell J Fulton; Tewodros Weldebirhan Arega; Kumaradevan Punithakumar; Lei Li; Xiaowu Sun; Yasmina Al Khalil; Di Liu; Sana Jabbar; Sandro Queiros; Francesco Galati; Moona Mazher; Zheyao Gao; Marcel Beetz; Lennart Tautz; Christoforos Galazis; Marta Varela; Markus Hullebrand; Vicente Grau; Xiahai Zhuang; Domenec Puig; Maria A Zuluaga; Hassan Mohy Ud Din; Dimitris Metaxas; Marcel Breeuwer; Rob J van der Geest; Michelle Noga; Stephanie Bricq; Mark E Rentschler; Andrea Guala; Steffen E Petersen; Sergio Escalera; Jose F Rodriguez Palomares; Karim Lekadir edit  url
doi  openurl
  Title Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&ms Challenge Type Journal Article
  Year (down) 2023 Publication IEEE Journal of Biomedical and Health Informatics Abbreviated Journal JBHI  
  Volume 27 Issue 7 Pages 3302-3313  
  Keywords  
  Abstract In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ MCI2023 Serial 3880  
Permanent link to this record
 

 
Author Javier Selva; Anders S. Johansen; Sergio Escalera; Kamal Nasrollahi; Thomas B. Moeslund; Albert Clapes edit  doi
openurl 
  Title Video transformers: A survey Type Journal Article
  Year (down) 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 11 Pages 12922-12943  
  Keywords Artificial Intelligence; Computer Vision; Self-Attention; Transformers; Video Representations  
  Abstract Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However, they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced by the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey, we analyze the main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled at the input level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition, we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.  
  Address 1 Nov. 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ SJE2023 Serial 3823  
Permanent link to this record
 

 
Author Lei Li; Fuping Wu; Sihan Wang; Xinzhe Luo; Carlos Martin Isla; Shuwei Zhai; Jianpeng Zhang; Yanfei Liu; Zhen Zhang; Markus J. Ankenbrand; Haochuan Jiang; Xiaoran Zhang; Linhong Wang; Tewodros Weldebirhan Arega; Elif Altunok; Zhou Zhao; Feiyan Li; Jun Ma; Xiaoping Yang; Elodie Puybareau; Ilkay Oksuz; Stephanie Bricq; Weisheng Li;Kumaradevan Punithakumar; Sotirios A. Tsaftaris; Laura M. Schreiber; Mingjing Yang; Guocai Liu; Yong Xia; Guotai Wang; Sergio Escalera; Xiahai Zhuag edit  url
openurl 
  Title MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images Type Journal Article
  Year (down) 2023 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 87 Issue Pages 102808  
  Keywords  
  Abstract Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on the myocardium is the key to this assessment. This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS) combining three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. Note that MyoPS refers to both myocardial pathology segmentation and the challenge in this paper. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation. In this article, we provide details of the challenge, survey the works from fifteen participants and interpret their methods according to five aspects, i.e., preprocessing, data augmentation, learning strategy, model architecture and post-processing. In addition, we analyze the results with respect to different factors, in order to examine the key obstacles and explore the potential of solutions, as well as to provide a benchmark for future research. The average Dice scores of submitted algorithms were and for myocardial scars and edema, respectively. We conclude that while promising results have been reported, the research is still in the early stage, and more in-depth exploration is needed before a successful application to the clinics. MyoPS data and evaluation tool continue to be publicly available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ LWW2023a Serial 3878  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: