toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Frederic Sampedro; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Spatial codification of label predictions in Multi-scale Stacked Sequential Learning: A case study on multi-class medical volume segmentation Type Journal Article
  Year 2015 Publication IET Computer Vision Abbreviated Journal IETCV  
  Volume (up) 9 Issue 3 Pages 439 - 446  
  Keywords  
  Abstract In this study, the authors propose the spatial codification of label predictions within the multi-scale stacked sequential learning (MSSL) framework, a successful learning scheme to deal with non-independent identically distributed data entries. After providing a motivation for this objective, they describe its theoretical framework based on the introduction of the blurred shape model as a smart descriptor to codify the spatial distribution of the predicted labels and define the new extended feature set for the second stacked classifier. They then particularise this scheme to be applied in volume segmentation applications. Finally, they test the implementation of the proposed framework in two medical volume segmentation datasets, obtaining significant performance improvements (with a 95% of confidence) in comparison to standard Adaboost classifier and classical MSSL approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-9632 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SaE2015 Serial 2551  
Permanent link to this record
 

 
Author Xavier Baro; Sergio Escalera; Jordi Vitria; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification Type Journal Article
  Year 2009 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume (up) 10 Issue 1 Pages 113–126  
  Keywords  
  Abstract The high variability of sign appearance in uncontrolled environments has made the detection and classification of road signs a challenging problem in computer vision. In this paper, we introduce a novel approach for the detection and classification of traffic signs. Detection is based on a boosted detectors cascade, trained with a novel evolutionary version of Adaboost, which allows the use of large feature spaces. Classification is defined as a multiclass categorization problem. A battery of classifiers is trained to split classes in an Error-Correcting Output Code (ECOC) framework. We propose an ECOC design through a forest of optimal tree structures that are embedded in the ECOC matrix. The novel system offers high performance and better accuracy than the state-of-the-art strategies and is potentially better in terms of noise, affine deformation, partial occlusions, and reduced illumination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;HuPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ BEV2008 Serial 1116  
Permanent link to this record
 

 
Author Laura Igual; Joan Carles Soliva; Antonio Hernandez; Sergio Escalera; Xavier Jimenez ; Oscar Vilarroya; Petia Radeva edit  doi
openurl 
  Title A fully-automatic caudate nucleus segmentation of brain MRI: Application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder Type Journal Article
  Year 2011 Publication BioMedical Engineering Online Abbreviated Journal BEO  
  Volume (up) 10 Issue 105 Pages 1-23  
  Keywords Brain caudate nucleus; segmentation; MRI; atlas-based strategy; Graph Cut framework  
  Abstract Background
Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations.

Method
We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure.

Results
We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis.

Conclusion
CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-925X ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ ISH2011 Serial 1882  
Permanent link to this record
 

 
Author Fatemeh Noroozi; Marina Marjanovic; Angelina Njegus; Sergio Escalera; Gholamreza Anbarjafari edit  doi
openurl 
  Title Audio-Visual Emotion Recognition in Video Clips Type Journal Article
  Year 2019 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume (up) 10 Issue 1 Pages 60-75  
  Keywords  
  Abstract This paper presents a multimodal emotion recognition system, which is based on the analysis of audio and visual cues. From the audio channel, Mel-Frequency Cepstral Coefficients, Filter Bank Energies and prosodic features are extracted. For the visual part, two strategies are considered. First, facial landmarks’ geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames, which are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to key-frames summarizing videos. Finally, confidence outputs of all the classifiers from all the modalities are used to define a new feature space to be learned for final emotion label prediction, in a late fusion/stacking fashion. The experiments conducted on the SAVEE, eNTERFACE’05, and RML databases show significant performance improvements by our proposed system in comparison to current alternatives, defining the current state-of-the-art in all three databases.  
  Address 1 Jan.-March 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; 602.143; 602.133;MILAB Approved no  
  Call Number Admin @ si @ NMN2017 Serial 3011  
Permanent link to this record
 

 
Author Ajian Liu; Xuan Li; Jun Wan; Yanyan Liang; Sergio Escalera; Hugo Jair Escalante; Meysam Madadi; Yi Jin; Zhuoyuan Wu; Xiaogang Yu; Zichang Tan; Qi Yuan; Ruikun Yang; Benjia Zhou; Guodong Guo; Stan Z. Li edit   pdf
url  openurl
  Title Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review Type Journal Article
  Year 2020 Publication IET Biometrics Abbreviated Journal BIO  
  Volume (up) 10 Issue 1 Pages 24-43  
  Keywords  
  Abstract Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has %possessed achieved impressive progress recently due the excellent performance of deep neural networks and the availability of large datasets. Although ethnic bias has been verified to severely affect the performance of face recognition systems, it still remains an open research problem in face anti-spoofing. Recently, a multi-ethnic face anti-spoofing dataset, CASIA-SURF CeFA, has been released with the goal of measuring the ethnic bias. It is the largest up to date cross-ethnicity face anti-spoofing dataset covering 3 ethnicities, 3 modalities, 1,607 subjects, 2D plus 3D attack types, and the first dataset including explicit ethnic labels among the recently released datasets for face anti-spoofing. We organized the Chalearn Face Anti-spoofing Attack Detection Challenge which consists of single-modal (e.g., RGB) and multi-modal (e.g., RGB, Depth, Infrared (IR)) tracks around this novel resource to boost research aiming to alleviate the ethnic bias. Both tracks have attracted 340 teams in the development stage, and finally 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively. All the results were verified and re-ran by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ LLW2020b Serial 3523  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: