|
Records |
Links |
|
Author |
Ester Fornells; Manuel De Armas; Maria Teresa Anguera; Sergio Escalera; Marcos Antonio Catalán; Josep Moya |

|
|
Title |
Desarrollo del proyecto del Consell Comarcal del Baix Llobregat “Buen Trato a las personas mayores y aquellas en situación de fragilidad con sufrimiento emocional: Hacia un envejecimiento saludable” |
Type |
Journal |
|
Year |
2018 |
Publication |
Informaciones Psiquiatricas |
Abbreviated Journal |
|
|
|
Volume  |
232 |
Issue |
|
Pages |
47-59 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0210-7279 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no menciona;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ FAA2018 |
Serial |
3214 |
|
Permanent link to this record |
|
|
|
|
Author |
Pichao Wang; Wanqing Li; Philip Ogunbona; Jun Wan; Sergio Escalera |


|
|
Title |
RGB-D-based Human Motion Recognition with Deep Learning: A Survey |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Computer Vision and Image Understanding |
Abbreviated Journal |
CVIU |
|
|
Volume  |
171 |
Issue |
|
Pages |
118-139 |
|
|
Keywords |
Human motion recognition; RGB-D data; Deep learning; Survey |
|
|
Abstract |
Human motion recognition is one of the most important branches of human-centered research activities. In recent years, motion recognition based on RGB-D data has attracted much attention. Along with the development in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In particular, convolutional neural networks (CNN) have achieved great success for image-based tasks, and recurrent neural networks (RNN) are renowned for sequence-based problems. Specifically, deep learning methods based on the CNN and RNN architectures have been adopted for motion recognition using RGB-D data. In this paper, a detailed overview of recent advances in RGB-D-based motion recognition is presented. The reviewed methods are broadly categorized into four groups, depending on the modality adopted for recognition: RGB-based, depth-based, skeleton-based and RGB+D-based. As a survey focused on the application of deep learning to RGB-D-based motion recognition, we explicitly discuss the advantages and limitations of existing techniques. Particularly, we highlighted the methods of encoding spatial-temporal-structural information inherent in video sequence, and discuss potential directions for future research. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ WLO2018 |
Serial |
3123 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |

|
|
Title |
Sign Language Recognition: A Deep Survey |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Expert Systems With Applications |
Abbreviated Journal |
ESWA |
|
|
Volume  |
164 |
Issue |
|
Pages |
113794 |
|
|
Keywords |
|
|
|
Abstract |
Sign language, as a different form of the communication language, is important to large groups of people in society. There are different signs in each sign language with variability in hand shape, motion profile, and position of the hand, face, and body parts contributing to each sign. So, visual sign language recognition is a complex research area in computer vision. Many models have been proposed by different researchers with significant improvement by deep learning approaches in recent years. In this survey, we review the vision-based proposed models of sign language recognition using deep learning approaches from the last five years. While the overall trend of the proposed models indicates a significant improvement in recognition accuracy in sign language recognition, there are some challenges yet that need to be solved. We present a taxonomy to categorize the proposed models for isolated and continuous sign language recognition, discussing applications, datasets, hybrid models, complexity, and future lines of research in the field. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2021a |
Serial |
3521 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera; Huamin Ren; Thomas B. Moeslund; Elham Etemad |

|
|
Title |
Locality Regularized Group Sparse Coding for Action Recognition |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Computer Vision and Image Understanding |
Abbreviated Journal |
CVIU |
|
|
Volume  |
158 |
Issue |
|
Pages |
106-114 |
|
|
Keywords |
Bag of words; Feature encoding; Locality constrained coding; Group sparse coding; Alternating direction method of multipliers; Action recognition |
|
|
Abstract |
Bag of visual words (BoVW) models are widely utilized in image/ video representation and recognition. The cornerstone of these models is the encoding stage, in which local features are decomposed over a codebook in order to obtain a representation of features. In this paper, we propose a new encoding algorithm by jointly encoding the set of local descriptors of each sample and considering the locality structure of descriptors. The proposed method takes advantages of locality coding such as its stability and robustness to noise in descriptors, as well as the strengths of the group coding strategy by taking into account the potential relation among descriptors of a sample. To efficiently implement our proposed method, we consider the Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. The method is employed for a challenging classification problem: action recognition by depth cameras. Experimental results demonstrate the outperformance of our methodology compared to the state-of-the-art on the considered datasets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGE2017 |
Serial |
3014 |
|
Permanent link to this record |
|
|
|
|
Author |
Daniel Sanchez; Miguel Angel Bautista; Sergio Escalera |

|
|
Title |
HuPBA 8k+: Dataset and ECOC-GraphCut based Segmentation of Human Limbs |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Neurocomputing |
Abbreviated Journal |
NEUCOM |
|
|
Volume  |
150 |
Issue |
A |
Pages |
173–188 |
|
|
Keywords |
Human limb segmentation; ECOC; Graph-Cuts |
|
|
Abstract |
Human multi-limb segmentation in RGB images has attracted a lot of interest in the research community because of the huge amount of possible applications in fields like Human-Computer Interaction, Surveillance, eHealth, or Gaming. Nevertheless, human multi-limb segmentation is a very hard task because of the changes in appearance produced by different points of view, clothing, lighting conditions, occlusions, and number of articulations of the human body. Furthermore, this huge pose variability makes the availability of large annotated datasets difficult. In this paper, we introduce the HuPBA8k+ dataset. The dataset contains more than 8000 labeled frames at pixel precision, including more than 120000 manually labeled samples of 14 different limbs. For completeness, the dataset is also labeled at frame-level with action annotations drawn from an 11 action dictionary which includes both single person actions and person-person interactive actions. Furthermore, we also propose a two-stage approach for the segmentation of human limbs. In a first stage, human limbs are trained using cascades of classifiers to be split in a tree-structure way, which is included in an Error-Correcting Output Codes (ECOC) framework to define a body-like probability map. This map is used to obtain a binary mask of the subject by means of GMM color modelling and GraphCuts theory. In a second stage, we embed a similar tree-structure in an ECOC framework to build a more accurate set of limb-like probability maps within the segmented user mask, that are fed to a multi-label GraphCut procedure to obtain final multi-limb segmentation. The methodology is tested on the novel HuPBA8k+ dataset, showing performance improvements in comparison to state-of-the-art approaches. In addition, a baseline of standard action recognition methods for the 11 actions categories of the novel dataset is also provided. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBE2015 |
Serial |
2552 |
|
Permanent link to this record |