|
Records |
Links |
|
Author |
Sergio Escalera; David Masip; Eloi Puertas; Petia Radeva; Oriol Pujol |
|
|
Title |
Online Error-Correcting Output Codes |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
32 |
Issue |
3 |
Pages |
458-467 |
|
|
Keywords |
|
|
|
Abstract |
IF JCR CCIA 1.303 2009 54/103
This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem independent codings one-versus-all and one-versus-one is introduced. Furthermore, two new codings are proposed, unbalanced online ECOC and a problem dependent online ECOC. This last online coding technique takes advantage of the problem data for minimizing the number of dichotomizers used in the ECOC framework while preserving a high accuracy. These techniques are validated on an online setting of 11 data sets from UCI database and applied to two real machine vision applications: traffic sign recognition and face recognition. As a result, the online ECOC techniques proposed provide a feasible and robust way for handling new classes using any base classifier. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
North Holland |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0167-8655 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;OR;HuPBA;MV |
Approved |
no |
|
|
Call Number |
Admin @ si @ EMP2011 |
Serial |
1714 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva |
|
|
Title |
Separability of Ternary Codes for Sparse Designs of Error-Correcting Output Codes |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
30 |
Issue |
3 |
Pages |
285–297 |
|
|
Keywords |
|
|
|
Abstract |
Error Correcting Output Codes (ECOC) represent a successful framework to deal with multi-class categorization problems based on combining binary classifiers. In this paper, we present a new formulation of the ternary ECOC distance and the error-correcting capabilities in the ternary ECOC framework. Based on the new measure, we stress on how to design coding matrices preventing codification ambiguity and propose a new Sparse Random coding matrix with ternary distance maximization. The results on the UCI Repository and in a real speed traffic categorization problem show that when the coding design satisfies the new ternary measures, significant performance improvement is obtained independently of the decoding strategy applied. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2009a |
Serial |
1153 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Otazu; Oriol Pujol |
|
|
Title |
Wavelet based approach to cluster analysis. Application on low dimensional data sets |
Type |
Journal Article |
|
Year |
2006 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
27 |
Issue |
14 |
Pages |
1590–1605 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; CIC; HuPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ OtP2006 |
Serial |
658 |
|
Permanent link to this record |
|
|
|
|
Author |
Francesco Ciompi; Oriol Pujol; Petia Radeva |
|
|
Title |
ECOC-DRF: Discriminative random fields based on error correcting output codes |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
6 |
Pages |
2193-2204 |
|
|
Keywords |
Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models |
|
|
Abstract |
We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
LAMP; HuPBA; MILAB; 605.203; 600.046; 601.043; 600.079 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CPR2014b |
Serial |
2470 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Angel Bautista; Sergio Escalera; Oriol Pujol |
|
|
Title |
On the Design of an ECOC-Compliant Genetic Algorithm |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
2 |
Pages |
865-884 |
|
|
Keywords |
|
|
|
Abstract |
Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ BEP2013 |
Serial |
2254 |
|
Permanent link to this record |