|
Records |
Links |
|
Author |
Jose Seabra; Francesco Ciompi; Oriol Pujol; J. Mauri; Petia Radeva; Joao Sanchez |
|
|
Title |
Rayleigh Mixture Model for Plaque Characterization in Intravascular Ultrasound |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Biomedical Engineering |
Abbreviated Journal |
TBME |
|
|
Volume |
58 |
Issue |
5 |
Pages |
1314-1324 |
|
|
Keywords |
|
|
|
Abstract |
Vulnerable plaques are the major cause of carotid and coronary vascular problems, such as heart attack or stroke. A correct modeling of plaque echomorphology and composition can help the identification of such lesions. The Rayleigh distribution is widely used to describe (nearly) homogeneous areas in ultrasound images. Since plaques may contain tissues with heterogeneous regions, more complex distributions depending on multiple parameters are usually needed, such as Rice, K or Nakagami distributions. In such cases, the problem formulation becomes more complex, and the optimization procedure to estimate the plaque echomorphology is more difficult. Here, we propose to model the tissue echomorphology by means of a mixture of Rayleigh distributions, known as the Rayleigh mixture model (RMM). The problem formulation is still simple, but its ability to describe complex textural patterns is very powerful. In this paper, we present a method for the automatic estimation of the RMM mixture parameters by means of the expectation maximization algorithm, which aims at characterizing tissue echomorphology in ultrasound (US). The performance of the proposed model is evaluated with a database of in vitro intravascular US cases. We show that the mixture coefficients and Rayleigh parameters explicitly derived from the mixture model are able to accurately describe different plaque types and to significantly improve the characterization performance of an already existing methodology. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ SCP2011 |
Serial |
1712 |
|
Permanent link to this record |
|
|
|
|
Author |
Julio C. S. Jacques Junior; Yagmur Gucluturk; Marc Perez; Umut Guçlu; Carlos Andujar; Xavier Baro; Hugo Jair Escalante; Isabelle Guyon; Marcel A. J. van Gerven; Rob van Lier; Sergio Escalera |
|
|
Title |
First Impressions: A Survey on Vision-Based Apparent Personality Trait Analysis |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
13 |
Issue |
1 |
Pages |
75-95 |
|
|
Keywords |
Personality computing; first impressions; person perception; big-five; subjective bias; computer vision; machine learning; nonverbal signals; facial expression; gesture; speech analysis; multi-modal recognition |
|
|
Abstract |
Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed. |
|
|
Address |
1 Jan.-March 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ JGP2022 |
Serial |
3724 |
|
Permanent link to this record |
|
|
|
|
Author |
Yagmur Gucluturk; Umut Guclu; Xavier Baro; Hugo Jair Escalante; Isabelle Guyon; Sergio Escalera; Marcel A. J. van Gerven; Rob van Lier |
|
|
Title |
Multimodal First Impression Analysis with Deep Residual Networks |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
8 |
Issue |
3 |
Pages |
316-329 |
|
|
Keywords |
|
|
|
Abstract |
People form first impressions about the personalities of unfamiliar individuals even after very brief interactions with them. In this study we present and evaluate several models that mimic this automatic social behavior. Specifically, we present several models trained on a large dataset of short YouTube video blog posts for predicting apparent Big Five personality traits of people and whether they seem suitable to be recommended to a job interview. Along with presenting our audiovisual approach and results that won the third place in the ChaLearn First Impressions Challenge, we investigate modeling in different modalities including audio only, visual only, language only, audiovisual, and combination of audiovisual and language. Our results demonstrate that the best performance could be obtained using a fusion of all data modalities. Finally, in order to promote explainability in machine learning and to provide an example for the upcoming ChaLearn challenges, we present a simple approach for explaining the predictions for job interview recommendations |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGB2018 |
Serial |
3210 |
|
Permanent link to this record |
|
|
|
|
Author |
Fatemeh Noroozi; Marina Marjanovic; Angelina Njegus; Sergio Escalera; Gholamreza Anbarjafari |
|
|
Title |
Audio-Visual Emotion Recognition in Video Clips |
Type |
Journal Article |
|
Year |
2019 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
10 |
Issue |
1 |
Pages |
60-75 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a multimodal emotion recognition system, which is based on the analysis of audio and visual cues. From the audio channel, Mel-Frequency Cepstral Coefficients, Filter Bank Energies and prosodic features are extracted. For the visual part, two strategies are considered. First, facial landmarks’ geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames, which are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to key-frames summarizing videos. Finally, confidence outputs of all the classifiers from all the modalities are used to define a new feature space to be learned for final emotion label prediction, in a late fusion/stacking fashion. The experiments conducted on the SAVEE, eNTERFACE’05, and RML databases show significant performance improvements by our proposed system in comparison to current alternatives, defining the current state-of-the-art in all three databases. |
|
|
Address |
1 Jan.-March 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; 602.143; 602.133 |
Approved |
no |
|
|
Call Number |
Admin @ si @ NMN2017 |
Serial |
3011 |
|
Permanent link to this record |
|
|
|
|
Author |
Jelena Gorbova; Egils Avots; Iiris Lusi; Mark Fishel; Sergio Escalera; Gholamreza Anbarjafari |
|
|
Title |
Integrating Vision and Language for First Impression Personality Analysis |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Multimedia |
Abbreviated Journal |
MULTIMEDIA |
|
|
Volume |
25 |
Issue |
2 |
Pages |
24 - 33 |
|
|
Keywords |
|
|
|
Abstract |
The authors present a novel methodology for analyzing integrated audiovisual signals and language to assess a persons personality. An evaluation of their proposed multimodal method using a job candidate screening system that predicted five personality traits from a short video demonstrates the methods effectiveness. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; 602.133 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GAL2018 |
Serial |
3124 |
|
Permanent link to this record |