|
Records |
Links |
|
Author |
Xavier Perez Sala; Fernando De la Torre; Laura Igual; Sergio Escalera; Cecilio Angulo |
|
|
Title |
Subspace Procrustes Analysis |
Type |
Journal Article |
|
Year |
2017 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
121 |
Issue |
3 |
Pages |
327–343 |
|
|
Keywords |
|
|
|
Abstract |
Procrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several
instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more efficient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; HuPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ PTI2017 |
Serial |
2841 |
|
Permanent link to this record |
|
|
|
|
Author |
Frederic Sampedro; Anna Domenech; Sergio Escalera; Ignasi Carrio |
|
|
Title |
Computing quantitative indicators of structural renal damage in pediatric DMSA scans |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Revista Española de Medicina Nuclear e Imagen Molecular |
Abbreviated Journal |
REMNIM |
|
|
Volume |
36 |
Issue |
2 |
Pages |
72-77 |
|
|
Keywords |
|
|
|
Abstract |
OBJECTIVES:
The proposal and implementation of a computational framework for the quantification of structural renal damage from 99mTc-dimercaptosuccinic acid (DMSA) scans. The aim of this work is to propose, implement, and validate a computational framework for the quantification of structural renal damage from DMSA scans and in an observer-independent manner.
MATERIALS AND METHODS:
From a set of 16 pediatric DMSA-positive scans and 16 matched controls and using both expert-guided and automatic approaches, a set of image-derived quantitative indicators was computed based on the relative size, intensity and histogram distribution of the lesion. A correlation analysis was conducted in order to investigate the association of these indicators with other clinical data of interest in this scenario, including C-reactive protein (CRP), white cell count, vesicoureteral reflux, fever, relative perfusion, and the presence of renal sequelae in a 6-month follow-up DMSA scan.
RESULTS:
A fully automatic lesion detection and segmentation system was able to successfully classify DMSA-positive from negative scans (AUC=0.92, sensitivity=81% and specificity=94%). The image-computed relative size of the lesion correlated with the presence of fever and CRP levels (p<0.05), and a measurement derived from the distribution histogram of the lesion obtained significant performance results in the detection of permanent renal damage (AUC=0.86, sensitivity=100% and specificity=75%).
CONCLUSIONS:
The proposal and implementation of a computational framework for the quantification of structural renal damage from DMSA scans showed a promising potential to complement visual diagnosis and non-imaging indicators. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDE2017 |
Serial |
2842 |
|
Permanent link to this record |
|
|
|
|
Author |
Mikkel Thogersen; Sergio Escalera; Jordi Gonzalez; Thomas B. Moeslund |
|
|
Title |
Segmentation of RGB-D Indoor scenes by Stacking Random Forests and Conditional Random Fields |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
80 |
Issue |
|
Pages |
208–215 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a technique for RGB-D scene segmentation using Multi-class
Multi-scale Stacked Sequential Learning (MMSSL) paradigm. Following recent trends in state-of-the-art, a base classifier uses an initial SLIC segmentation to obtain superpixels which provide a diminution of data while retaining object boundaries. A series of color and depth features are extracted from the superpixels, and are used in a Conditional Random Field (CRF) to predict superpixel labels. Furthermore, a Random Forest (RF) classifier using random offset features is also used as an input to the CRF, acting as an initial prediction. As a stacked classifier, another Random Forest is used acting on a spatial multi-scale decomposition of the CRF confidence map to correct the erroneous labels assigned by the previous classifier. The model is tested on the popular NYU-v2 dataset.
The approach shows that simple multi-modal features with the power of the MMSSL
paradigm can achieve better performance than state of the art results on the same dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE;MILAB; 600.098; 600.119 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TEG2016 |
Serial |
2843 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Garcia-Rodriguez; Isabelle Guyon; Sergio Escalera; Alexandra Psarrou; Andrew Lewis; Miguel Cazorla |
|
|
Title |
Editorial: Special Issue on Computational Intelligence for Vision and Robotics |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Neural Computing and Applications |
Abbreviated Journal |
Neural Computing and Applications |
|
|
Volume |
28 |
Issue |
5 |
Pages |
853–854 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGE2017 |
Serial |
2845 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Jordi Gonzalez; Xavier Baro; Jamie Shotton |
|
|
Title |
Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis |
Type |
Journal Article |
|
Year |
2016 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
28 |
Issue |
|
Pages |
1489 - 1491 |
|
|
Keywords |
|
|
|
Abstract |
The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE;MV;;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
2851 |
|
Permanent link to this record |