toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jun Wan; Chi Lin; Longyin Wen; Yunan Li; Qiguang Miao; Sergio Escalera; Gholamreza Anbarjafari; Isabelle Guyon; Guodong Guo; Stan Z. Li edit   pdf
url  doi
openurl 
  Title (up) ChaLearn Looking at People: IsoGD and ConGD Large-scale RGB-D Gesture Recognition Type Journal Article
  Year 2022 Publication IEEE Transactions on Cybernetics Abbreviated Journal TCIBERN  
  Volume 52 Issue 5 Pages 3422-3433  
  Keywords  
  Abstract The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on Pattern Recognition (ICPR) 2016 and International Conference on Computer Vision (ICCV) 2017, attracting more than 200 teams round the world. This challenge has two tracks, focusing on isolated and continuous gesture recognition, respectively. This paper describes the creation of both benchmark datasets and analyzes the advances in large-scale gesture recognition based on these two datasets. We discuss the challenges of collecting large-scale ground-truth annotations of gesture recognition, and provide a detailed analysis of the current state-of-the-art methods for large-scale isolated and continuous gesture recognition based on RGB-D video sequences. In addition to recognition rate and mean jaccard index (MJI) as evaluation metrics used in our previous challenges, we also introduce the corrected segmentation rate (CSR) metric to evaluate the performance of temporal segmentation for continuous gesture recognition. Furthermore, we propose a bidirectional long short-term memory (Bi-LSTM) baseline method, determining the video division points based on the skeleton points extracted by convolutional pose machine (CPM). Experiments demonstrate that the proposed Bi-LSTM outperforms the state-of-the-art methods with an absolute improvement of 8.1% (from 0.8917 to 0.9639) of CSR.  
  Address May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ WLW2022 Serial 3522  
Permanent link to this record
 

 
Author Sergio Escalera; Vassilis Athitsos; Isabelle Guyon edit  url
openurl 
  Title (up) Challenges in multimodal gesture recognition Type Journal Article
  Year 2016 Publication Journal of Machine Learning Research Abbreviated Journal JMLR  
  Volume 17 Issue Pages 1-54  
  Keywords Gesture Recognition; Time Series Analysis; Multimodal Data Analysis; Computer Vision; Pattern Recognition; Wearable sensors; Infrared Cameras; KinectTM  
  Abstract This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011-2015. We began right at the start of the KinectTMrevolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands
of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Zhuowen Tu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ EAG2016 Serial 2764  
Permanent link to this record
 

 
Author Xavier Carrillo; E Fernandez-Nofrerias; Francesco Ciompi; Oriol Rodriguez-Leor; Petia Radeva; Neus Salvatella; Oriol Pujol; J. Mauri; A. Bayes edit  openurl
  Title (up) Changes in Radial Artery Volume Assessed Using Intravascular Ultrasound: A Comparison of Two Vasodilator Regimens in Transradial Coronary Intervention Type Journal Article
  Year 2011 Publication Journal of Invasive Cardiology Abbreviated Journal JOIC  
  Volume 23 Issue 10 Pages 401-404  
  Keywords radial; vasodilator treatment; percutaneous coronary intervention; IVUS; volumetric IVUS analysis  
  Abstract OBJECTIVES:
This study used intravascular ultrasound (IVUS) to evaluate radial artery volume changes after intraarterial administration of nitroglycerin and/or verapamil.
BACKGROUND:
Radial artery spasm, which is associated with radial artery size, is the main limitation of the transradial approach in percutaneous coronary interventions (PCI).
METHODS:
This prospective, randomized study compared the effect of two intra-arterial vasodilator regimens on radial artery volume: 0.2 mg of nitroglycerin plus 2.5 mg of verapamil (Group 1; n = 15) versus 2.5 mg of verapamil alone (Group 2; n = 15). Radial artery lumen volume was assessed using IVUS at two time points: at baseline (5 minutes after sheath insertion) and post-vasodilator (1 minute after drug administration). The luminal volume of the radial artery was computed using ECOC Random Fields (ECOC-RF), a technique used for automatic segmentation of luminal borders in longitudinal cut images from IVUS sequences.
RESULTS:
There was a significant increase in arterial lumen volume in both groups, with an increase from 451 ± 177 mm³ to 508 ± 192 mm³ (p = 0.001) in Group 1 and from 456 ± 188 mm³ to 509 ± 170 mm³ (p = 0.001) in Group 2. There were no significant differences between the groups in terms of absolute volume increase (58 mm³ versus 53 mm³, respectively; p = 0.65) or in relative volume increase (14% versus 20%, respectively; p = 0.69).
CONCLUSIONS:
Administration of nitroglycerin plus verapamil or verapamil alone to the radial artery resulted in similar increases in arterial lumen volume according to ECOC-RF IVUS measurements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ CFC2011 Serial 1797  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; Oriol Pujol; Josep Llados; Petia Radeva edit  doi
openurl 
  Title (up) Circular Blurred Shape Model for Multiclass Symbol Recognition Type Journal Article
  Year 2011 Publication IEEE Transactions on Systems, Man and Cybernetics (Part B) (IEEE) Abbreviated Journal TSMCB  
  Volume 41 Issue 2 Pages 497-506  
  Keywords  
  Abstract In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-4419 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; DAG;HuPBA Approved no  
  Call Number Admin @ si @ EFP2011 Serial 1784  
Permanent link to this record
 

 
Author Zhen Xu; Sergio Escalera; Adrien Pavao; Magali Richard; Wei-Wei Tu; Quanming Yao; Huan Zhao; Isabelle Guyon edit  doi
openurl 
  Title (up) Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform Type Journal Article
  Year 2022 Publication Patterns Abbreviated Journal PATTERNS  
  Volume 3 Issue 7 Pages 100543  
  Keywords Machine learning; data science; benchmark platform; reproducibility; competitions  
  Abstract Obtaining a standardized benchmark of computational methods is a major issue in data-science communities. Dedicated frameworks enabling fair benchmarking in a unified environment are yet to be developed. Here, we introduce Codabench, a meta-benchmark platform that is open sourced and community driven for benchmarking algorithms or software agents versus datasets or tasks. A public instance of Codabench is open to everyone free of charge and allows benchmark organizers to fairly compare submissions under the same setting (software, hardware, data, algorithms), with custom protocols and data formats. Codabench has unique features facilitating easy organization of flexible and reproducible benchmarks, such as the possibility of reusing templates of benchmarks and supplying compute resources on demand. Codabench has been used internally and externally on various applications, receiving more than 130 users and 2,500 submissions. As illustrative use cases, we introduce four diverse benchmarks covering graph machine learning, cancer heterogeneity, clinical diagnosis, and reinforcement learning.  
  Address June 24, 2022  
  Corporate Author Thesis  
  Publisher Science Direct Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Admin @ si @ XEP2022 Serial 3764  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: