|
Records |
Links |
|
Author |
Pichao Wang; Wanqing Li; Philip Ogunbona; Jun Wan; Sergio Escalera |


|
|
Title  |
RGB-D-based Human Motion Recognition with Deep Learning: A Survey |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Computer Vision and Image Understanding |
Abbreviated Journal |
CVIU |
|
|
Volume |
171 |
Issue |
|
Pages |
118-139 |
|
|
Keywords |
Human motion recognition; RGB-D data; Deep learning; Survey |
|
|
Abstract |
Human motion recognition is one of the most important branches of human-centered research activities. In recent years, motion recognition based on RGB-D data has attracted much attention. Along with the development in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In particular, convolutional neural networks (CNN) have achieved great success for image-based tasks, and recurrent neural networks (RNN) are renowned for sequence-based problems. Specifically, deep learning methods based on the CNN and RNN architectures have been adopted for motion recognition using RGB-D data. In this paper, a detailed overview of recent advances in RGB-D-based motion recognition is presented. The reviewed methods are broadly categorized into four groups, depending on the modality adopted for recognition: RGB-based, depth-based, skeleton-based and RGB+D-based. As a survey focused on the application of deep learning to RGB-D-based motion recognition, we explicitly discuss the advantages and limitations of existing techniques. Particularly, we highlighted the methods of encoding spatial-temporal-structural information inherent in video sequence, and discuss potential directions for future research. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ WLO2018 |
Serial |
3123 |
|
Permanent link to this record |
|
|
|
|
Author |
Pejman Rasti; Salma Samiei; Mary Agoyi; Sergio Escalera; Gholamreza Anbarjafari |


|
|
Title  |
Robust non-blind color video watermarking using QR decomposition and entropy analysis |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Visual Communication and Image Representation |
Abbreviated Journal |
JVCIR |
|
|
Volume |
38 |
Issue |
|
Pages |
838-847 |
|
|
Keywords |
Video watermarking; QR decomposition; Discrete Wavelet Transformation; Chirp Z-transform; Singular value decomposition; Orthogonal–triangular decomposition |
|
|
Abstract |
Issues such as content identification, document and image security, audience measurement, ownership and copyright among others can be settled by the use of digital watermarking. Many recent video watermarking methods show drops in visual quality of the sequences. The present work addresses the aforementioned issue by introducing a robust and imperceptible non-blind color video frame watermarking algorithm. The method divides frames into moving and non-moving parts. The non-moving part of each color channel is processed separately using a block-based watermarking scheme. Blocks with an entropy lower than the average entropy of all blocks are subject to a further process for embedding the watermark image. Finally a watermarked frame is generated by adding moving parts to it. Several signal processing attacks are applied to each watermarked frame in order to perform experiments and are compared with some recent algorithms. Experimental results show that the proposed scheme is imperceptible and robust against common signal processing attacks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @RSA2016 |
Serial |
2766 |
|
Permanent link to this record |
|
|
|
|
Author |
Mikkel Thogersen; Sergio Escalera; Jordi Gonzalez; Thomas B. Moeslund |

|
|
Title  |
Segmentation of RGB-D Indoor scenes by Stacking Random Forests and Conditional Random Fields |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
80 |
Issue |
|
Pages |
208–215 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a technique for RGB-D scene segmentation using Multi-class
Multi-scale Stacked Sequential Learning (MMSSL) paradigm. Following recent trends in state-of-the-art, a base classifier uses an initial SLIC segmentation to obtain superpixels which provide a diminution of data while retaining object boundaries. A series of color and depth features are extracted from the superpixels, and are used in a Conditional Random Field (CRF) to predict superpixel labels. Furthermore, a Random Forest (RF) classifier using random offset features is also used as an input to the CRF, acting as an initial prediction. As a stacked classifier, another Random Forest is used acting on a spatial multi-scale decomposition of the CRF confidence map to correct the erroneous labels assigned by the previous classifier. The model is tested on the popular NYU-v2 dataset.
The approach shows that simple multi-modal features with the power of the MMSSL
paradigm can achieve better performance than state of the art results on the same dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE;MILAB; 600.098; 600.119 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TEG2016 |
Serial |
2843 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva |

|
|
Title  |
Separability of Ternary Codes for Sparse Designs of Error-Correcting Output Codes |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
30 |
Issue |
3 |
Pages |
285–297 |
|
|
Keywords |
|
|
|
Abstract |
Error Correcting Output Codes (ECOC) represent a successful framework to deal with multi-class categorization problems based on combining binary classifiers. In this paper, we present a new formulation of the ternary ECOC distance and the error-correcting capabilities in the ternary ECOC framework. Based on the new measure, we stress on how to design coding matrices preventing codification ambiguity and propose a new Sparse Random coding matrix with ternary distance maximization. The results on the UCI Repository and in a real speed traffic categorization problem show that when the coding design satisfies the new ternary measures, significant performance improvement is obtained independently of the decoding strategy applied. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2009a |
Serial |
1153 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |

|
|
Title  |
Sign Language Recognition: A Deep Survey |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Expert Systems With Applications |
Abbreviated Journal |
ESWA |
|
|
Volume |
164 |
Issue |
|
Pages |
113794 |
|
|
Keywords |
|
|
|
Abstract |
Sign language, as a different form of the communication language, is important to large groups of people in society. There are different signs in each sign language with variability in hand shape, motion profile, and position of the hand, face, and body parts contributing to each sign. So, visual sign language recognition is a complex research area in computer vision. Many models have been proposed by different researchers with significant improvement by deep learning approaches in recent years. In this survey, we review the vision-based proposed models of sign language recognition using deep learning approaches from the last five years. While the overall trend of the proposed models indicates a significant improvement in recognition accuracy in sign language recognition, there are some challenges yet that need to be solved. We present a taxonomy to categorize the proposed models for isolated and continuous sign language recognition, discussing applications, datasets, hybrid models, complexity, and future lines of research in the field. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2021a |
Serial |
3521 |
|
Permanent link to this record |