toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio edit  doi
openurl 
  Title Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A Supervised Learning Approach Source Type Journal Article
  Year 2015 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal JMIHI  
  Volume 5 Issue 2 Pages 192-201  
  Keywords CONTEXTUAL CLASSIFICATION; PET/CT; SUPERVISED LEARNING; TUMOR SEGMENTATION; WHOLE BODY  
  Abstract Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then, a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49% sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both at the clinical and technological level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SED2015 Serial 2584  
Permanent link to this record
 

 
Author Victor Ponce; Mario Gorga; Xavier Baro; Petia Radeva; Sergio Escalera edit  url
openurl 
  Title Análisis de la expresión oral y gestual en proyectos fin de carrera vía un sistema de visión artificial Type Journal Article
  Year 2011 Publication ReVisión Abbreviated Journal  
  Volume 4 Issue 1 Pages  
  Keywords  
  Abstract La comunicación y expresión oral es una competencia de especial relevancia en el EEES. No obstante, en muchas enseñanzas superiores la puesta en práctica de esta competencia ha sido relegada principalmente a la presentación de proyectos fin de carrera. Dentro de un proyecto de innovación docente, se ha desarrollado una herramienta informática para la extracción de información objetiva para el análisis de la expresión oral y gestual de los alumnos. El objetivo es dar un “feedback” a los estudiantes que les permita mejorar la calidad de sus presentaciones. El prototipo inicial que se presenta en este trabajo permite extraer de forma automática información audiovisual y analizarla mediante técnicas de aprendizaje. El sistema ha sido aplicado a 15 proyectos fin de carrera y 15 exposiciones dentro de una asignatura de cuarto curso. Los resultados obtenidos muestran la viabilidad del sistema para sugerir factores que ayuden tanto en el éxito de la comunicación así como en los criterios de evaluación.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 1989-1199 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; MILAB;MV;OR Approved no  
  Call Number Admin @ si @ PGB2011d Serial 2514  
Permanent link to this record
 

 
Author Frederic Sampedro; Anna Domenech; Sergio Escalera edit  url
doi  openurl
  Title Static and dynamic computational cancer spread quantification in whole body FDG-PET/CT scans Type Journal Article
  Year 2014 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal JMIHI  
  Volume 4 Issue 6 Pages 825-831  
  Keywords CANCER SPREAD; COMPUTER AIDED DIAGNOSIS; MEDICAL IMAGING; TUMOR QUANTIFICATION  
  Abstract In this work we address the computational cancer spread quantification scenario in whole body FDG-PET/CT scans. At the static level, this setting can be modeled as a clustering problem on the set of 3D connected components of the whole body PET tumoral segmentation mask carried out by nuclear medicine physicians. At the dynamic level, and ad-hoc algorithm is proposed in order to quantify the cancer spread time evolution which, when combined with other existing indicators, gives rise to the metabolic tumor volume-aggressiveness-spread time evolution chart, a novel tool that we claim that would prove useful in nuclear medicine and oncological clinical or research scenarios. Good performance results of the proposed methodologies both at the clinical and technological level are shown using a dataset of 48 segmented whole body FDG-PET/CT scans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SDE2014b Serial 2548  
Permanent link to this record
 

 
Author Alvaro Cepero; Albert Clapes; Sergio Escalera edit   pdf
doi  openurl
  Title Automatic non-verbal communication skills analysis: a quantitative evaluation Type Journal Article
  Year 2015 Publication AI Communications Abbreviated Journal AIC  
  Volume 28 Issue 1 Pages 87-101  
  Keywords Social signal processing; human behavior analysis; multi-modal data description; multi-modal data fusion; non-verbal communication analysis; e-Learning  
  Abstract The oral communication competence is defined on the top of the most relevant skills for one's professional and personal life. Because of the importance of communication in our activities of daily living, it is crucial to study methods to evaluate and provide the necessary feedback that can be used in order to improve these communication capabilities and, therefore, learn how to express ourselves better. In this work, we propose a system capable of evaluating quantitatively the quality of oral presentations in an automatic fashion. The system is based on a multi-modal RGB, depth, and audio data description and a fusion approach in order to recognize behavioral cues and train classifiers able to eventually predict communication quality levels. The performance of the proposed system is tested on a novel dataset containing Bachelor thesis' real defenses, presentations from an 8th semester Bachelor courses, and Master courses' presentations at Universitat de Barcelona. Using as groundtruth the marks assigned by actual instructors, our system achieves high performance categorizing and ranking presentations by their quality, and also making real-valued mark predictions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 0921-7126 ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA;MILAB Approved no  
  Call Number Admin @ si @ CCE2015 Serial 2549  
Permanent link to this record
 

 
Author Frederic Sampedro; Sergio Escalera; Anna Puig edit  doi
openurl 
  Title Iterative Multiclass Multiscale Stacked Sequential Learning: definition and application to medical volume segmentation Type Journal Article
  Year 2014 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 46 Issue Pages 1-10  
  Keywords Machine learning; Sequential learning; Multi-class problems; Contextual learning; Medical volume segmentation  
  Abstract In this work we present the iterative multi-class multi-scale stacked sequential learning framework (IMMSSL), a novel learning scheme that is particularly suited for medical volume segmentation applications. This model exploits the inherent voxel contextual information of the structures of interest in order to improve its segmentation performance results. Without any feature set or learning algorithm prior assumption, the proposed scheme directly seeks to learn the contextual properties of a region from the predicted classifications of previous classifiers within an iterative scheme. Performance results regarding segmentation accuracy in three two-class and multi-class medical volume datasets show a significant improvement with respect to state of the art alternatives. Due to its easiness of implementation and its independence of feature space and learning algorithm, the presented machine learning framework could be taken into consideration as a first choice in complex volume segmentation scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SEP2014 Serial 2550  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: