toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Oscar Lopes; Miguel Reyes; Sergio Escalera; Jordi Gonzalez edit  doi
openurl 
  Title Spherical Blurred Shape Model for 3-D Object and Pose Recognition: Quantitative Analysis and HCI Applications in Smart Environments Type Journal Article
  Year 2014 Publication IEEE Transactions on Systems, Man and Cybernetics (Part B) Abbreviated Journal TSMCB  
  Volume 44 Issue 12 Pages 2379-2390  
  Keywords  
  Abstract The use of depth maps is of increasing interest after the advent of cheap multisensor devices based on structured light, such as Kinect. In this context, there is a strong need of powerful 3-D shape descriptors able to generate rich object representations. Although several 3-D descriptors have been already proposed in the literature, the research of discriminative and computationally efficient descriptors is still an open issue. In this paper, we propose a novel point cloud descriptor called spherical blurred shape model (SBSM) that successfully encodes the structure density and local variabilities of an object based on shape voxel distances and a neighborhood propagation strategy. The proposed SBSM is proven to be rotation and scale invariant, robust to noise and occlusions, highly discriminative for multiple categories of complex objects like the human hand, and computationally efficient since the SBSM complexity is linear to the number of object voxels. Experimental evaluation in public depth multiclass object data, 3-D facial expressions data, and a novel hand poses data sets show significant performance improvements in relation to state-of-the-art approaches. Moreover, the effectiveness of the proposal is also proved for object spotting in 3-D scenes and for real-time automatic hand pose recognition in human computer interaction scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-2267 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; 600.078;MILAB Approved no  
  Call Number Admin @ si @ LRE2014 Serial (down) 2442  
Permanent link to this record
 

 
Author Mohammad ali Bagheri; Qigang Gao; Sergio Escalera edit  doi
openurl 
  Title Combining Local and Global Learners in the Pairwise Multiclass Classification Type Journal Article
  Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 18 Issue 4 Pages 845-860  
  Keywords Multiclass classification; Pairwise approach; One-versus-one  
  Abstract Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2014 Serial (down) 2441  
Permanent link to this record
 

 
Author Sergio Escalera edit   pdf
url  openurl
  Title Multi-Modal Human Behaviour Analysis from Visual Data Sources Type Journal
  Year 2013 Publication ERCIM News journal Abbreviated Journal ERCIM  
  Volume 95 Issue Pages 21-22  
  Keywords  
  Abstract The Human Pose Recovery and Behaviour Analysis group (HuPBA), University of Barcelona, is developing a line of research on multi-modal analysis of humans in visual data. The novel technology is being applied in several scenarios with high social impact, including sign language recognition, assisted technology and supported diagnosis for the elderly and people with mental/physical disabilities, fitness conditioning, and Human Computer Interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-4981 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ Esc2013 Serial (down) 2361  
Permanent link to this record
 

 
Author Antonio Hernandez; Miguel Angel Bautista; Xavier Perez Sala; Victor Ponce; Sergio Escalera; Xavier Baro; Oriol Pujol; Cecilio Angulo edit   pdf
doi  openurl
  Title Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D Type Journal Article
  Year 2014 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 50 Issue 1 Pages 112-121  
  Keywords RGB-D; Bag-of-Words; Dynamic Time Warping; Human Gesture Recognition  
  Abstract PATREC5825
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MV; 605.203 Approved no  
  Call Number Admin @ si @ HBP2014 Serial (down) 2353  
Permanent link to this record
 

 
Author Laura Igual; Xavier Perez Sala; Sergio Escalera; Cecilio Angulo; Fernando De la Torre edit   pdf
url  doi
openurl 
  Title Continuous Generalized Procrustes Analysis Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 2 Pages 659–671  
  Keywords Procrustes analysis; 2D shape model; Continuous approach  
  Abstract PR4883, PII: S0031-3203(13)00327-0
Two-dimensional shape models have been successfully applied to solve many problems in computer vision, such as object tracking, recognition, and segmentation. Typically, 2D shape models are learned from a discrete set of image landmarks (corresponding to projection of 3D points of an object), after applying Generalized Procustes Analysis (GPA) to remove 2D rigid transformations. However, the
standard GPA process suffers from three main limitations. Firstly, the 2D training samples do not necessarily cover a uniform sampling of all the 3D transformations of an object. This can bias the estimate of the shape model. Secondly, it can be computationally expensive to learn the shape model by sampling 3D transformations. Thirdly, standard GPA methods use only one reference shape, which can might be insufficient to capture large structural variability of some objects.
To address these drawbacks, this paper proposes continuous generalized Procrustes analysis (CGPA).
CGPA uses a continuous formulation that avoids the need to generate 2D projections from all the rigid 3D transformations. It builds an efficient (in space and time) non-biased 2D shape model from a set of 3D model of objects. A major challenge in CGPA is the need to integrate over the space of 3D rotations, especially when the rotations are parameterized with Euler angles. To address this problem, we introduce the use of the Haar measure. Finally, we extended CGPA to incorporate several reference shapes. Experimental results on synthetic and real experiments show the benefits of CGPA over GPA.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; HuPBA; 605.203; 600.046;MILAB Approved no  
  Call Number Admin @ si @ IPE2014 Serial (down) 2352  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: