|
Records |
Links |
|
Author |
Pierluigi Casale; Oriol Pujol; Petia Radeva |

|
|
Title |
Personalization and User Verification in Wearable Systems using Biometric Walking Patterns |
Type |
Journal Article |
|
Year |
2012 |
Publication  |
Personal and Ubiquitous Computing |
Abbreviated Journal |
PUC |
|
|
Volume |
16 |
Issue |
5 |
Pages |
563-580 |
|
|
Keywords |
|
|
|
Abstract |
In this article, a novel technique for user’s authentication and verification using gait as a biometric unobtrusive pattern is proposed. The method is based on a two stages pipeline. First, a general activity recognition classifier is personalized for an specific user using a small sample of her/his walking pattern. As a result, the system is much more selective with respect to the new walking pattern. A second stage verifies whether the user is an authorized one or not. This stage is defined as a one-class classification problem. In order to solve this problem, a four-layer architecture is built around the geometric concept of convex hull. This architecture allows to improve robustness to outliers, modeling non-convex shapes, and to take into account temporal coherence information. Two different scenarios are proposed as validation with two different wearable systems. First, a custom high-performance wearable system is built and used in a free environment. A second dataset is acquired from an Android-based commercial device in a ‘wild’ scenario with rough terrains, adversarial conditions, crowded places and obstacles. Results on both systems and datasets are very promising, reducing the verification error rates by an order of magnitude with respect to the state-of-the-art technologies. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1617-4909 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ CPR2012 |
Serial |
1706 |
|
Permanent link to this record |
|
|
|
|
Author |
Penny Tarling; Mauricio Cantor; Albert Clapes; Sergio Escalera |

|
|
Title |
Deep learning with self-supervision and uncertainty regularization to count fish in underwater images |
Type |
Journal Article |
|
Year |
2022 |
Publication  |
PloS One |
Abbreviated Journal |
Plos |
|
|
Volume |
17 |
Issue |
5 |
Pages |
e0267759 |
|
|
Keywords |
|
|
|
Abstract |
Effective conservation actions require effective population monitoring. However, accurately counting animals in the wild to inform conservation decision-making is difficult. Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive but created a need to process and analyse this data efficiently. Counting animals from such data is challenging, particularly when densely packed in noisy images. Attempting this manually is slow and expensive, while traditional computer vision methods are limited in their generalisability. Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals. To this end, we employ deep learning, with a density-based regression approach, to count fish in low-resolution sonar images. We introduce a large dataset of sonar videos, deployed to record wild Lebranche mullet schools (Mugil liza), with a subset of 500 labelled images. We utilise abundant unlabelled data in a self-supervised task to improve the supervised counting task. For the first time in this context, by introducing uncertainty quantification, we improve model training and provide an accompanying measure of prediction uncertainty for more informed biological decision-making. Finally, we demonstrate the generalisability of our proposed counting framework through testing it on a recent benchmark dataset of high-resolution annotated underwater images from varying habitats (DeepFish). From experiments on both contrasting datasets, we demonstrate our network outperforms the few other deep learning models implemented for solving this task. By providing an open-source framework along with training data, our study puts forth an efficient deep learning template for crowd counting aquatic animals thereby contributing effective methods to assess natural populations from the ever-increasing visual data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Public Library of Science |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ TCC2022 |
Serial |
3743 |
|
Permanent link to this record |
|
|
|
|
Author |
Javier Marin; Sergio Escalera |


|
|
Title |
SSSGAN: Satellite Style and Structure Generative Adversarial Networks |
Type |
Journal Article |
|
Year |
2021 |
Publication  |
Remote Sensing |
Abbreviated Journal |
|
|
|
Volume |
13 |
Issue |
19 |
Pages |
3984 |
|
|
Keywords |
|
|
|
Abstract |
This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ MaE2021 |
Serial |
3651 |
|
Permanent link to this record |
|
|
|
|
Author |
Victor Ponce; Mario Gorga; Xavier Baro; Petia Radeva; Sergio Escalera |

|
|
Title |
Análisis de la expresión oral y gestual en proyectos fin de carrera vía un sistema de visión artificial |
Type |
Journal Article |
|
Year |
2011 |
Publication  |
ReVisión |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
1 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
La comunicación y expresión oral es una competencia de especial relevancia en el EEES. No obstante, en muchas enseñanzas superiores la puesta en práctica de esta competencia ha sido relegada principalmente a la presentación de proyectos fin de carrera. Dentro de un proyecto de innovación docente, se ha desarrollado una herramienta informática para la extracción de información objetiva para el análisis de la expresión oral y gestual de los alumnos. El objetivo es dar un “feedback” a los estudiantes que les permita mejorar la calidad de sus presentaciones. El prototipo inicial que se presenta en este trabajo permite extraer de forma automática información audiovisual y analizarla mediante técnicas de aprendizaje. El sistema ha sido aplicado a 15 proyectos fin de carrera y 15 exposiciones dentro de una asignatura de cuarto curso. Los resultados obtenidos muestran la viabilidad del sistema para sugerir factores que ayuden tanto en el éxito de la comunicación así como en los criterios de evaluación. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1989-1199 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; MILAB;MV;OR |
Approved |
no |
|
|
Call Number |
Admin @ si @ PGB2011d |
Serial |
2514 |
|
Permanent link to this record |
|
|
|
|
Author |
O. Rodriguez; J. Mauri; E Fernandez-Nofrerias; A. Tovar; R. Villuendas; V. Valle; Oriol Pujol; Petia Radeva |

|
|
Title |
Analisis de texturas mediante la modificacion de un modelo binario local para la segmentacion automatica de secuencias de ecografia intracoronaria |
Type |
Journal |
|
Year |
2003 |
Publication  |
Revista Española de Cardiologia (IF: 0.959), 56(2), Congreso de las Enfermedades Cardiovasculares |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Sevilla (Spain) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ RMF2003f |
Serial |
413 |
|
Permanent link to this record |