toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Carlo Gatta; Oriol Pujol; Oriol Rodriguez-Leor; J. M. Ferre; Petia Radeva edit  doi
openurl 
  Title Fast Rigid Registration of Vascular Structures in IVUS Sequences Type Journal Article
  Year 2009 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal  
  Volume 13 Issue 6 Pages 106-1011  
  Keywords  
  Abstract Intravascular ultrasound (IVUS) technology permits visualization of high-resolution images of internal vascular structures. IVUS is a unique image-guiding tool to display longitudinal view of the vessels, and estimate the length and size of vascular structures with the goal of accurate diagnosis. Unfortunately, due to pulsatile contraction and expansion of the heart, the captured images are affected by different motion artifacts that make visual inspection difficult. In this paper, we propose an efficient algorithm that aligns vascular structures and strongly reduces the saw-shaped oscillation, simplifying the inspection of longitudinal cuts; it reduces the motion artifacts caused by the displacement of the catheter in the short-axis plane and the catheter rotation due to vessel tortuosity. The algorithm prototype aligns 3.16 frames/s and clearly outperforms state-of-the-art methods with similar computational cost. The speed of the algorithm is crucial since it allows to inspect the corrected sequence during patient intervention. Moreover, we improved an indirect methodology for IVUS rigid registration algorithm evaluation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1089-7771 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ GPL2009 Serial 1250  
Permanent link to this record
 

 
Author Oriol Pujol; David Masip edit  doi
openurl 
  Title Geometry-Based Ensembles: Toward a Structural Characterization of the Classification Boundary Type Journal Article
  Year 2009 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 31 Issue 6 Pages 1140–1146  
  Keywords  
  Abstract This article introduces a novel binary discriminative learning technique based on the approximation of the non-linear decision boundary by a piece-wise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points – points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule. As a result, a very simple and robust classifier with a strong geometrical meaning and non-linear behavior is obtained. The simplicity of the method allows its extension to cope with some of nowadays machine learning challenges, such as online learning, large scale learning or parallelization, with linear computational complexity. We validate our approach on the UCI database. Finally, we apply our technique in online and large scale scenarios, and in six real life computer vision and pattern recognition problems: gender recognition, intravascular ultrasound tissue classification, speed traffic sign detection, Chagas' disease severity detection, clef classification and action recognition using a 3D accelerometer data. The results are promising and this paper opens a line of research that deserves further attention  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;HuPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ PuM2009 Serial 1252  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; J. Mauri; Petia Radeva edit  doi
openurl 
  Title Intravascular Ultrasound Tissue Characterization with Sub-class Error-Correcting Output Codes Type Journal Article
  Year 2009 Publication Journal of Signal Processing Systems Abbreviated Journal  
  Volume 55 Issue 1-3 Pages 35–47  
  Keywords  
  Abstract Intravascular ultrasound (IVUS) represents a powerful imaging technique to explore coronary vessels and to study their morphology and histologic properties. In this paper, we characterize different tissues based on radial frequency, texture-based, and combined features. To deal with the classification of multiple tissues, we require the use of robust multi-class learning techniques. In this sense, error-correcting output codes (ECOC) show to robustly combine binary classifiers to solve multi-class problems. In this context, we propose a strategy to model multi-class classification tasks using sub-classes information in the ECOC framework. The new strategy splits the classes into different sub-sets according to the applied base classifier. Complex IVUS data sets containing overlapping data are learnt by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. The method automatically characterizes different tissues, showing performance improvements over the state-of-the-art ECOC techniques for different base classifiers. Furthermore, the combination of RF and texture-based features also shows improvements over the state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-8018 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPM2009 Serial 1258  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Traffic sign recognition system with β -correction Type Journal Article
  Year 2010 Publication Machine Vision and Applications Abbreviated Journal MVA  
  Volume 21 Issue 2 Pages 99–111  
  Keywords  
  Abstract Traffic sign classification represents a classical application of multi-object recognition processing in uncontrolled adverse environments. Lack of visibility, illumination changes, and partial occlusions are just a few problems. In this paper, we introduce a novel system for multi-class classification of traffic signs based on error correcting output codes (ECOC). ECOC is based on an ensemble of binary classifiers that are trained on bi-partition of classes. We classify a wide set of traffic signs types using robust error correcting codings. Moreover, we introduce the novel β-correction decoding strategy that outperforms the state-of-the-art decoding techniques, classifying a high number of classes with great success.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010a Serial 1276  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title On the Decoding Process in Ternary Error-Correcting Output Codes Type Journal Article
  Year 2010 Publication IEEE on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 32 Issue 1 Pages 120–134  
  Keywords  
  Abstract A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-correcting output codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a ldquodo not carerdquo symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI machine learning repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010b Serial 1277  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: