toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Oriol Rodriguez-Leor; Carlo Gatta; E. Fernandez-Nofrerias; Oriol Pujol; Neus Salvatella; C. Bosch; H. Tizon; Petia Radeva; J. Mauri edit  openurl
  Title Computationally Efficient Image-based IVUS Pullbacks Gating Type Journal
  Year 2008 Publication European Heart Journal, ESC Supplement, Munich, 2008, p. 775 Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ RGF2008 Serial 1036  
Permanent link to this record
 

 
Author Xavier Baro; Sergio Escalera; Jordi Vitria; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification Type Journal Article
  Year 2009 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 10 Issue 1 Pages 113–126  
  Keywords (up)  
  Abstract The high variability of sign appearance in uncontrolled environments has made the detection and classification of road signs a challenging problem in computer vision. In this paper, we introduce a novel approach for the detection and classification of traffic signs. Detection is based on a boosted detectors cascade, trained with a novel evolutionary version of Adaboost, which allows the use of large feature spaces. Classification is defined as a multiclass categorization problem. A battery of classifiers is trained to split classes in an Error-Correcting Output Code (ECOC) framework. We propose an ECOC design through a forest of optimal tree structures that are embedded in the ECOC matrix. The novel system offers high performance and better accuracy than the state-of-the-art strategies and is potentially better in terms of noise, affine deformation, partial occlusions, and reduced illumination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;HuPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ BEV2008 Serial 1116  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Separability of Ternary Codes for Sparse Designs of Error-Correcting Output Codes Type Journal Article
  Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 30 Issue 3 Pages 285–297  
  Keywords (up)  
  Abstract Error Correcting Output Codes (ECOC) represent a successful framework to deal with multi-class categorization problems based on combining binary classifiers. In this paper, we present a new formulation of the ternary ECOC distance and the error-correcting capabilities in the ternary ECOC framework. Based on the new measure, we stress on how to design coding matrices preventing codification ambiguity and propose a new Sparse Random coding matrix with ternary distance maximization. The results on the UCI Repository and in a real speed traffic categorization problem show that when the coding design satisfies the new ternary measures, significant performance improvement is obtained independently of the decoding strategy applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2009a Serial 1153  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; O. Pujol; Petia Radeva; Gemma Sanchez; Josep Llados edit  doi
openurl 
  Title Blurred Shape Model for Binary and Grey-level Symbol Recognition Type Journal Article
  Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 30 Issue 15 Pages 1424–1433  
  Keywords (up)  
  Abstract Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; DAG; MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ EFP2009a Serial 1180  
Permanent link to this record
 

 
Author Carlo Gatta; Oriol Pujol; Oriol Rodriguez-Leor; J. M. Ferre; Petia Radeva edit  doi
openurl 
  Title Fast Rigid Registration of Vascular Structures in IVUS Sequences Type Journal Article
  Year 2009 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal  
  Volume 13 Issue 6 Pages 106-1011  
  Keywords (up)  
  Abstract Intravascular ultrasound (IVUS) technology permits visualization of high-resolution images of internal vascular structures. IVUS is a unique image-guiding tool to display longitudinal view of the vessels, and estimate the length and size of vascular structures with the goal of accurate diagnosis. Unfortunately, due to pulsatile contraction and expansion of the heart, the captured images are affected by different motion artifacts that make visual inspection difficult. In this paper, we propose an efficient algorithm that aligns vascular structures and strongly reduces the saw-shaped oscillation, simplifying the inspection of longitudinal cuts; it reduces the motion artifacts caused by the displacement of the catheter in the short-axis plane and the catheter rotation due to vessel tortuosity. The algorithm prototype aligns 3.16 frames/s and clearly outperforms state-of-the-art methods with similar computational cost. The speed of the algorithm is crucial since it allows to inspect the corrected sequence during patient intervention. Moreover, we improved an indirect methodology for IVUS rigid registration algorithm evaluation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1089-7771 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ GPL2009 Serial 1250  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: