toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alvaro Cepero; Albert Clapes; Sergio Escalera edit   pdf
doi  openurl
  Title Automatic non-verbal communication skills analysis: a quantitative evaluation Type Journal Article
  Year 2015 Publication AI Communications Abbreviated Journal AIC  
  Volume 28 Issue (up) 1 Pages 87-101  
  Keywords Social signal processing; human behavior analysis; multi-modal data description; multi-modal data fusion; non-verbal communication analysis; e-Learning  
  Abstract The oral communication competence is defined on the top of the most relevant skills for one's professional and personal life. Because of the importance of communication in our activities of daily living, it is crucial to study methods to evaluate and provide the necessary feedback that can be used in order to improve these communication capabilities and, therefore, learn how to express ourselves better. In this work, we propose a system capable of evaluating quantitatively the quality of oral presentations in an automatic fashion. The system is based on a multi-modal RGB, depth, and audio data description and a fusion approach in order to recognize behavioral cues and train classifiers able to eventually predict communication quality levels. The performance of the proposed system is tested on a novel dataset containing Bachelor thesis' real defenses, presentations from an 8th semester Bachelor courses, and Master courses' presentations at Universitat de Barcelona. Using as groundtruth the marks assigned by actual instructors, our system achieves high performance categorizing and ranking presentations by their quality, and also making real-valued mark predictions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-7126 ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA;MILAB Approved no  
  Call Number Admin @ si @ CCE2015 Serial 2549  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Antonio Hernandez; Sergio Escalera; Laura Igual; Oriol Pujol; Josep Moya; Veronica Violant; Maria Teresa Anguera edit   pdf
doi  openurl
  Title A Gesture Recognition System for Detecting Behavioral Patterns of ADHD Type Journal Article
  Year 2016 Publication IEEE Transactions on System, Man and Cybernetics, Part B Abbreviated Journal TSMCB  
  Volume 46 Issue (up) 1 Pages 136-147  
  Keywords Gesture Recognition; ADHD; Gaussian Mixture Models; Convex Hulls; Dynamic Time Warping; Multi-modal RGB-Depth data  
  Abstract We present an application of gesture recognition using an extension of Dynamic Time Warping (DTW) to recognize behavioural patterns of Attention Deficit Hyperactivity Disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either GMMs or an approximation of Convex Hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intra-class gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioural patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multi-modal dataset (RGB plus Depth) of ADHD children recordings with behavioural patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; MILAB; Approved no  
  Call Number Admin @ si @ BHE2016 Serial 2566  
Permanent link to this record
 

 
Author Antonio Hernandez; Sergio Escalera; Stan Sclaroff edit  doi
openurl 
  Title Poselet-basedContextual Rescoring for Human Pose Estimation via Pictorial Structures Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 118 Issue (up) 1 Pages 49–64  
  Keywords Contextual rescoring; Poselets; Human pose estimation  
  Abstract In this paper we propose a contextual rescoring method for predicting the position of body parts in a human pose estimation framework. A set of poselets is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body part hypotheses. A method is proposed for the automatic discovery of a compact subset of poselets that covers the different poses in a set of validation images while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for each body joint detection, given its relationship to detections of other body joints and mid-level parts in the image. This new score is incorporated in the pictorial structure model as an additional unary potential, following the recent work of Pishchulin et al. Experiments on two benchmarks show comparable results to Pishchulin et al. while reducing the size of the mid-level representation by an order of magnitude, reducing the execution time by 68 % accordingly.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ HES2016 Serial 2719  
Permanent link to this record
 

 
Author Fatemeh Noroozi; Marina Marjanovic; Angelina Njegus; Sergio Escalera; Gholamreza Anbarjafari edit  doi
openurl 
  Title Audio-Visual Emotion Recognition in Video Clips Type Journal Article
  Year 2019 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 10 Issue (up) 1 Pages 60-75  
  Keywords  
  Abstract This paper presents a multimodal emotion recognition system, which is based on the analysis of audio and visual cues. From the audio channel, Mel-Frequency Cepstral Coefficients, Filter Bank Energies and prosodic features are extracted. For the visual part, two strategies are considered. First, facial landmarks’ geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames, which are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to key-frames summarizing videos. Finally, confidence outputs of all the classifiers from all the modalities are used to define a new feature space to be learned for final emotion label prediction, in a late fusion/stacking fashion. The experiments conducted on the SAVEE, eNTERFACE’05, and RML databases show significant performance improvements by our proposed system in comparison to current alternatives, defining the current state-of-the-art in all three databases.  
  Address 1 Jan.-March 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; 602.143; 602.133;MILAB Approved no  
  Call Number Admin @ si @ NMN2017 Serial 3011  
Permanent link to this record
 

 
Author Mark Philip Philipsen; Jacob Velling Dueholm; Anders Jorgensen; Sergio Escalera; Thomas B. Moeslund edit  doi
openurl 
  Title Organ Segmentation in Poultry Viscera Using RGB-D Type Journal Article
  Year 2018 Publication Sensors Abbreviated Journal SENS  
  Volume 18 Issue (up) 1 Pages 117  
  Keywords semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN  
  Abstract We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ PVJ2018 Serial 3072  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: