|
Records |
Links |
|
Author |
Yunan Li; Jun Wan; Qiguang Miao; Sergio Escalera; Huijuan Fang; Huizhou Chen; Xiangda Qi; Guodong Guo |
|
|
Title |
CR-Net: A Deep Classification-Regression Network for Multimodal Apparent Personality Analysis |
Type |
Journal Article |
|
Year |
2020 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
128 |
Issue |
|
Pages |
2763–2780 |
|
|
Keywords |
|
|
|
Abstract |
First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the person’s motions and background) and the face of the person. Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ LWM2020 |
Serial |
3413 |
|
Permanent link to this record |
|
|
|
|
Author |
Zhengying Liu; Zhen Xu; Sergio Escalera; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Adrien Pavao; Sebastien Treguer; Wei-Wei Tu |
|
|
Title |
Towards automated computer vision: analysis of the AutoCV challenges 2019 |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
135 |
Issue |
|
Pages |
196-203 |
|
|
Keywords |
Computer vision; AutoML; Deep learning |
|
|
Abstract |
We present the results of recent challenges in Automated Computer Vision (AutoCV, renamed here for clarity AutoCV1 and AutoCV2, 2019), which are part of a series of challenge on Automated Deep Learning (AutoDL). These two competitions aim at searching for fully automated solutions for classification tasks in computer vision, with an emphasis on any-time performance. The first competition was limited to image classification while the second one included both images and videos. Our design imposed to the participants to submit their code on a challenge platform for blind testing on five datasets, both for training and testing, without any human intervention whatsoever. Winning solutions adopted deep learning techniques based on already published architectures, such as AutoAugment, MobileNet and ResNet, to reach state-of-the-art performance in the time budget of the challenge (only 20 minutes of GPU time). The novel contributions include strategies to deliver good preliminary results at any time during the learning process, such that a method can be stopped early and still deliver good performance. This feature is key for the adoption of such techniques by data analysts desiring to obtain rapidly preliminary results on large datasets and to speed up the development process. The soundness of our design was verified in several aspects: (1) Little overfitting of the on-line leaderboard providing feedback on 5 development datasets was observed, compared to the final blind testing on the 5 (separate) final test datasets, suggesting that winning solutions might generalize to other computer vision classification tasks; (2) Error bars on the winners’ performance allow us to say with confident that they performed significantly better than the baseline solutions we provided; (3) The ranking of participants according to the any-time metric we designed, namely the Area under the Learning Curve, was different from that of the fixed-time metric, i.e. AUC at the end of the fixed time budget. We released all winning solutions under open-source licenses. At the end of the AutoDL challenge series, all data of the challenge will be made publicly available, thus providing a collection of uniformly formatted datasets, which can serve to conduct further research, particularly on meta-learning. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ LXE2020 |
Serial |
3427 |
|
Permanent link to this record |
|
|
|
|
Author |
Meysam Madadi; Hugo Bertiche; Sergio Escalera |
|
|
Title |
SMPLR: Deep learning based SMPL reverse for 3D human pose and shape recovery |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
106 |
Issue |
|
Pages |
107472 |
|
|
Keywords |
Deep learning; 3D Human pose; Body shape; SMPL; Denoising autoencoder; Volumetric stack hourglass |
|
|
Abstract |
In this paper we propose to embed SMPL within a deep-based model to accurately estimate 3D pose and shape from a still RGB image. We use CNN-based 3D joint predictions as an intermediate representation to regress SMPL pose and shape parameters. Later, 3D joints are reconstructed again in the SMPL output. This module can be seen as an autoencoder where the encoder is a deep neural network and the decoder is SMPL model. We refer to this as SMPL reverse (SMPLR). By implementing SMPLR as an encoder-decoder we avoid the need of complex constraints on pose and shape. Furthermore, given that in-the-wild datasets usually lack accurate 3D annotations, it is desirable to lift 2D joints to 3D without pairing 3D annotations with RGB images. Therefore, we also propose a denoising autoencoder (DAE) module between CNN and SMPLR, able to lift 2D joints to 3D and partially recover from structured error. We evaluate our method on SURREAL and Human3.6M datasets, showing improvement over SMPL-based state-of-the-art alternatives by about 4 and 12 mm, respectively. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ MBE2020 |
Serial |
3439 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |
|
|
Title |
Video-based Isolated Hand Sign Language Recognition Using a Deep Cascaded Model |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
79 |
Issue |
|
Pages |
22965–22987 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose an efficient cascaded model for sign language recognition taking benefit from spatio-temporal hand-based information using deep learning approaches, especially Single Shot Detector (SSD), Convolutional Neural Network (CNN), and Long Short Term Memory (LSTM), from videos. Our simple yet efficient and accurate model includes two main parts: hand detection and sign recognition. Three types of spatial features, including hand features, Extra Spatial Hand Relation (ESHR) features, and Hand Pose (HP) features, have been fused in the model to feed to LSTM for temporal features extraction. We train SSD model for hand detection using some videos collected from five online sign dictionaries. Our model is evaluated on our proposed dataset (Rastgoo et al., Expert Syst Appl 150: 113336, 2020), including 10’000 sign videos for 100 Persian sign using 10 contributors in 10 different backgrounds, and isoGD dataset. Using the 5-fold cross-validation method, our model outperforms state-of-the-art alternatives in sign language recognition |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2020b |
Serial |
3442 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |
|
|
Title |
Sign Language Recognition: A Deep Survey |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Expert Systems With Applications |
Abbreviated Journal |
ESWA |
|
|
Volume |
164 |
Issue |
|
Pages |
113794 |
|
|
Keywords |
|
|
|
Abstract |
Sign language, as a different form of the communication language, is important to large groups of people in society. There are different signs in each sign language with variability in hand shape, motion profile, and position of the hand, face, and body parts contributing to each sign. So, visual sign language recognition is a complex research area in computer vision. Many models have been proposed by different researchers with significant improvement by deep learning approaches in recent years. In this survey, we review the vision-based proposed models of sign language recognition using deep learning approaches from the last five years. While the overall trend of the proposed models indicates a significant improvement in recognition accuracy in sign language recognition, there are some challenges yet that need to be solved. We present a taxonomy to categorize the proposed models for isolated and continuous sign language recognition, discussing applications, datasets, hybrid models, complexity, and future lines of research in the field. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2021a |
Serial |
3521 |
|
Permanent link to this record |