toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Francesco Ciompi; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title ECOC-DRF: Discriminative random fields based on error correcting output codes Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 6 Pages (down) 2193-2204  
  Keywords Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models  
  Abstract We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; HuPBA; MILAB; 605.203; 600.046; 601.043; 600.079 Approved no  
  Call Number Admin @ si @ CPR2014b Serial 2470  
Permanent link to this record
 

 
Author Sergio Escalera; Ana Puig; Oscar Amoros; Maria Salamo edit  doi
openurl 
  Title Intelligent GPGPU Classification in Volume Visualization: a framework based on Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Computer Graphics Forum Abbreviated Journal CGF  
  Volume 30 Issue 7 Pages (down) 2107-2115  
  Keywords  
  Abstract IF JCR 1.455 2010 25/99
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a framework of intelligent methods to label on-demand multiple regions of interest. These methods can be split into a two-level GPU-based labelling algorithm that computes in time of rendering a set of labelled structures using the Machine Learning Error-Correcting Output Codes (ECOC) framework. In a pre-processing step, ECOC trains a set of Adaboost binary classifiers from a reduced pre-labelled data set. Then, at the testing stage, each classifier is independently applied on the features of a set of unlabelled samples and combined to perform multi-class labelling. We also propose an alternative representation of these classifiers that allows to highly parallelize the testing stage. To exploit that parallelism we implemented the testing stage in GPU-OpenCL. The empirical results on different data sets for several volume structures shows high computational performance and classification accuracy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA Approved no  
  Call Number Admin @ si @ EPA2011 Serial 1881  
Permanent link to this record
 

 
Author Reza Azad; Maryam Asadi-Aghbolaghi; Shohreh Kasaei; Sergio Escalera edit  doi
openurl 
  Title Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps Type Journal Article
  Year 2019 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT  
  Volume 29 Issue 6 Pages (down) 1729-1740  
  Keywords Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding  
  Abstract Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.  
  Address June 2019,  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ AAK2018 Serial 3213  
Permanent link to this record
 

 
Author Sergio Escalera; Xavier Baro; Jordi Vitria; Petia Radeva; Bogdan Raducanu edit   pdf
doi  openurl
  Title Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue 2 Pages (down) 1702-1719  
  Keywords  
  Abstract IF=1.77 (2010)
Social interactions are a very important component in peopleís lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Timesí Blogging Heads opinion blog.
The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The linksí weights are a measure of the ìinfluenceî a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
 
  Address  
  Corporate Author Thesis  
  Publisher Molecular Diversity Preservation International Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ EBV2012 Serial 1885  
Permanent link to this record
 

 
Author Xavier Otazu; Oriol Pujol edit  doi
openurl 
  Title Wavelet based approach to cluster analysis. Application on low dimensional data sets Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue 14 Pages (down) 1590–1605  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; CIC; HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ OtP2006 Serial 658  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: