|
Records |
Links |
|
Author |
Eloi Puertas; Sergio Escalera; Oriol Pujol |
|
|
Title |
Generalized Multi-scale Stacked Sequential Learning for Multi-class Classification |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Analysis and Applications |
Abbreviated Journal |
PAA |
|
|
Volume |
18 |
Issue |
2 |
Pages |
247-261 |
|
|
Keywords |
Stacked sequential learning; Multi-scale; Error-correct output codes (ECOC); Contextual classification |
|
|
Abstract |
In many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-7541 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ PEP2013 |
Serial |
2251 |
|
Permanent link to this record |
|
|
|
|
Author |
Victor Ponce; Sergio Escalera; Marc Perez; Oriol Janes; Xavier Baro |
|
|
Title |
Non-Verbal Communication Analysis in Victim-Offender Mediations |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
67 |
Issue |
1 |
Pages |
19-27 |
|
|
Keywords |
Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning |
|
|
Abstract |
We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ PEP2015 |
Serial |
2583 |
|
Permanent link to this record |
|
|
|
|
Author |
Victor Ponce; Mario Gorga; Xavier Baro; Petia Radeva; Sergio Escalera |
|
|
Title |
Análisis de la expresión oral y gestual en proyectos fin de carrera vía un sistema de visión artificial |
Type |
Journal Article |
|
Year |
2011 |
Publication |
ReVisión |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
1 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
La comunicación y expresión oral es una competencia de especial relevancia en el EEES. No obstante, en muchas enseñanzas superiores la puesta en práctica de esta competencia ha sido relegada principalmente a la presentación de proyectos fin de carrera. Dentro de un proyecto de innovación docente, se ha desarrollado una herramienta informática para la extracción de información objetiva para el análisis de la expresión oral y gestual de los alumnos. El objetivo es dar un “feedback” a los estudiantes que les permita mejorar la calidad de sus presentaciones. El prototipo inicial que se presenta en este trabajo permite extraer de forma automática información audiovisual y analizarla mediante técnicas de aprendizaje. El sistema ha sido aplicado a 15 proyectos fin de carrera y 15 exposiciones dentro de una asignatura de cuarto curso. Los resultados obtenidos muestran la viabilidad del sistema para sugerir factores que ayuden tanto en el éxito de la comunicación así como en los criterios de evaluación. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1989-1199 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; MILAB;MV;OR |
Approved |
no |
|
|
Call Number |
Admin @ si @ PGB2011d |
Serial |
2514 |
|
Permanent link to this record |
|
|
|
|
Author |
Adrien Pavao; Isabelle Guyon; Anne-Catherine Letournel; Dinh-Tuan Tran; Xavier Baro; Hugo Jair Escalante; Sergio Escalera; Tyler Thomas; Zhen Xu |
|
|
Title |
CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Journal of Machine Learning Research |
Abbreviated Journal |
JMLR |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
CodaLab Competitions is an open source web platform designed to help data scientists and research teams to crowd-source the resolution of machine learning problems through the organization of competitions, also called challenges or contests. CodaLab Competitions provides useful features such as multiple phases, results and code submissions, multi-score leaderboards, and jobs running
inside Docker containers. The platform is very flexible and can handle large scale experiments, by allowing organizers to upload large datasets and provide their own CPU or GPU compute workers. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ PGL2023 |
Serial |
3973 |
|
Permanent link to this record |
|
|
|
|
Author |
Ricardo Dario Perez Principi; Cristina Palmero; Julio C. S. Jacques Junior; Sergio Escalera |
|
|
Title |
On the Effect of Observed Subject Biases in Apparent Personality Analysis from Audio-visual Signals |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
12 |
Issue |
3 |
Pages |
607-621 |
|
|
Keywords |
|
|
|
Abstract |
Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target, but the personality external observers attributed to it. Hence, they have to deal with human bias, inherently transferred to the training data. However, bias analysis in personality computing is an almost unexplored area. In this work, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation. To this end, we propose a multi-modal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality. We also analyse spatio-temporal aggregation schemes and the effect of different time intervals on first impressions. We base our study on the ChaLearn First Impressions dataset, consisting of one-person conversational videos. Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model. Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions. |
|
|
Address |
1 July-Sept. 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ PPJ2019 |
Serial |
3312 |
|
Permanent link to this record |