|
Records |
Links |
|
Author |
Mohamed Ilyes Lakhal; Hakan Çevikalp; Sergio Escalera; Ferda Ofli |
|
|
Title |
Recurrent Neural Networks for Remote Sensing Image Classification |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IET Computer Vision |
Abbreviated Journal |
IETCV |
|
|
Volume |
12 |
Issue |
7 |
Pages |
1040 - 1045 |
|
|
Keywords |
|
|
|
Abstract |
Automatically classifying an image has been a central problem in computer vision for decades. A plethora of models has been proposed, from handcrafted feature solutions to more sophisticated approaches such as deep learning. The authors address the problem of remote sensing image classification, which is an important problem to many real world applications. They introduce a novel deep recurrent architecture that incorporates high-level feature descriptors to tackle this challenging problem. Their solution is based on the general encoder–decoder framework. To the best of the authors’ knowledge, this is the first study to use a recurrent network structure on this task. The experimental results show that the proposed framework outperforms the previous works in the three datasets widely used in the literature. They have achieved a state-of-the-art accuracy rate of 97.29% on the UC Merced dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ LÇE2018 |
Serial |
3119 |
|
Permanent link to this record |
|
|
|
|
Author |
Ajian Liu; Xuan Li; Jun Wan; Yanyan Liang; Sergio Escalera; Hugo Jair Escalante; Meysam Madadi; Yi Jin; Zhuoyuan Wu; Xiaogang Yu; Zichang Tan; Qi Yuan; Ruikun Yang; Benjia Zhou; Guodong Guo; Stan Z. Li |
|
|
Title |
Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review |
Type |
Journal Article |
|
Year |
2020 |
Publication |
IET Biometrics |
Abbreviated Journal |
BIO |
|
|
Volume |
10 |
Issue |
1 |
Pages |
24-43 |
|
|
Keywords |
|
|
|
Abstract |
Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has %possessed achieved impressive progress recently due the excellent performance of deep neural networks and the availability of large datasets. Although ethnic bias has been verified to severely affect the performance of face recognition systems, it still remains an open research problem in face anti-spoofing. Recently, a multi-ethnic face anti-spoofing dataset, CASIA-SURF CeFA, has been released with the goal of measuring the ethnic bias. It is the largest up to date cross-ethnicity face anti-spoofing dataset covering 3 ethnicities, 3 modalities, 1,607 subjects, 2D plus 3D attack types, and the first dataset including explicit ethnic labels among the recently released datasets for face anti-spoofing. We organized the Chalearn Face Anti-spoofing Attack Detection Challenge which consists of single-modal (e.g., RGB) and multi-modal (e.g., RGB, Depth, Infrared (IR)) tracks around this novel resource to boost research aiming to alleviate the ethnic bias. Both tracks have attracted 340 teams in the development stage, and finally 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively. All the results were verified and re-ran by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ LLW2020b |
Serial |
3523 |
|
Permanent link to this record |
|
|
|
|
Author |
Andre Litvin; Kamal Nasrollahi; Sergio Escalera; Cagri Ozcinar; Thomas B. Moeslund; Gholamreza Anbarjafari |
|
|
Title |
A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
78 |
Issue |
18 |
Pages |
25259–25271 |
|
|
Keywords |
Fully convolutional networks; FusionNet; Thermal imaging; Face recognition |
|
|
Abstract |
This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no menciona;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ LNE2019 |
Serial |
3318 |
|
Permanent link to this record |
|
|
|
|
Author |
Zhengying Liu; Adrien Pavao; Zhen Xu; Sergio Escalera; Fabio Ferreira; Isabelle Guyon; Sirui Hong; Frank Hutter; Rongrong Ji; Julio C. S. Jacques Junior; Ge Li; Marius Lindauer; Zhipeng Luo; Meysam Madadi; Thomas Nierhoff; Kangning Niu; Chunguang Pan; Danny Stoll; Sebastien Treguer; Jin Wang; Peng Wang; Chenglin Wu; Youcheng Xiong; Arber Zela; Yang Zhang |
|
|
Title |
Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019 |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
43 |
Issue |
9 |
Pages |
3108 - 3125 |
|
|
Keywords |
|
|
|
Abstract |
This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a “meta-learner”, “data ingestor”, “model selector”, “model/learner”, and “evaluator”. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free “AutoDL self-service.” |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ LPX2021 |
Serial |
3587 |
|
Permanent link to this record |
|
|
|
|
Author |
Oscar Lopes; Miguel Reyes; Sergio Escalera; Jordi Gonzalez |
|
|
Title |
Spherical Blurred Shape Model for 3-D Object and Pose Recognition: Quantitative Analysis and HCI Applications in Smart Environments |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Systems, Man and Cybernetics (Part B) |
Abbreviated Journal |
TSMCB |
|
|
Volume |
44 |
Issue |
12 |
Pages |
2379-2390 |
|
|
Keywords |
|
|
|
Abstract |
The use of depth maps is of increasing interest after the advent of cheap multisensor devices based on structured light, such as Kinect. In this context, there is a strong need of powerful 3-D shape descriptors able to generate rich object representations. Although several 3-D descriptors have been already proposed in the literature, the research of discriminative and computationally efficient descriptors is still an open issue. In this paper, we propose a novel point cloud descriptor called spherical blurred shape model (SBSM) that successfully encodes the structure density and local variabilities of an object based on shape voxel distances and a neighborhood propagation strategy. The proposed SBSM is proven to be rotation and scale invariant, robust to noise and occlusions, highly discriminative for multiple categories of complex objects like the human hand, and computationally efficient since the SBSM complexity is linear to the number of object voxels. Experimental evaluation in public depth multiclass object data, 3-D facial expressions data, and a novel hand poses data sets show significant performance improvements in relation to state-of-the-art approaches. Moreover, the effectiveness of the proposal is also proved for object spotting in 3-D scenes and for real-time automatic hand pose recognition in human computer interaction scenarios. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2168-2267 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE; 600.078;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRE2014 |
Serial |
2442 |
|
Permanent link to this record |