|
Records |
Links |
|
Author |
Hugo Bertiche; Meysam Madadi; Sergio Escalera |


|
|
Title |
PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation |
Type |
Journal Article |
|
Year |
2021 |
Publication |
ACM Transactions on Graphics |
Abbreviated Journal |
|
|
|
Volume |
40 |
Issue |
6 |
Pages |
1-14 |
|
|
Keywords |
|
|
|
Abstract |
We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BME2021c |
Serial |
3643 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Angel Bautista; Antonio Hernandez; Sergio Escalera; Laura Igual; Oriol Pujol; Josep Moya; Veronica Violant; Maria Teresa Anguera |


|
|
Title |
A Gesture Recognition System for Detecting Behavioral Patterns of ADHD |
Type |
Journal Article |
|
Year |
2016 |
Publication |
IEEE Transactions on System, Man and Cybernetics, Part B |
Abbreviated Journal |
TSMCB |
|
|
Volume |
46 |
Issue |
1 |
Pages |
136-147 |
|
|
Keywords |
Gesture Recognition; ADHD; Gaussian Mixture Models; Convex Hulls; Dynamic Time Warping; Multi-modal RGB-Depth data |
|
|
Abstract |
We present an application of gesture recognition using an extension of Dynamic Time Warping (DTW) to recognize behavioural patterns of Attention Deficit Hyperactivity Disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either GMMs or an approximation of Convex Hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intra-class gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioural patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multi-modal dataset (RGB plus Depth) of ADHD children recordings with behavioural patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; MILAB; |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BHE2016 |
Serial |
2566 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera; Huamin Ren; Thomas B. Moeslund; Elham Etemad |

|
|
Title |
Locality Regularized Group Sparse Coding for Action Recognition |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Computer Vision and Image Understanding |
Abbreviated Journal |
CVIU |
|
|
Volume |
158 |
Issue |
|
Pages |
106-114 |
|
|
Keywords |
Bag of words; Feature encoding; Locality constrained coding; Group sparse coding; Alternating direction method of multipliers; Action recognition |
|
|
Abstract |
Bag of visual words (BoVW) models are widely utilized in image/ video representation and recognition. The cornerstone of these models is the encoding stage, in which local features are decomposed over a codebook in order to obtain a representation of features. In this paper, we propose a new encoding algorithm by jointly encoding the set of local descriptors of each sample and considering the locality structure of descriptors. The proposed method takes advantages of locality coding such as its stability and robustness to noise in descriptors, as well as the strengths of the group coding strategy by taking into account the potential relation among descriptors of a sample. To efficiently implement our proposed method, we consider the Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. The method is employed for a challenging classification problem: action recognition by depth cameras. Experimental results demonstrate the outperformance of our methodology compared to the state-of-the-art on the considered datasets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BGE2017 |
Serial |
3014 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera |

|
|
Title |
Combining Local and Global Learners in the Pairwise Multiclass Classification |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Analysis and Applications |
Abbreviated Journal |
PAA |
|
|
Volume |
18 |
Issue |
4 |
Pages |
845-860 |
|
|
Keywords |
Multiclass classification; Pairwise approach; One-versus-one |
|
|
Abstract |
Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer London |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-7541 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BGE2014 |
Serial |
2441 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera |


|
|
Title |
A Genetic-based Subspace Analysis Method for Improving Error-Correcting Output Coding |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
10 |
Pages |
2830-2839 |
|
|
Keywords |
Error Correcting Output Codes; Evolutionary computation; Multiclass classification; Feature subspace; Ensemble classification |
|
|
Abstract |
Two key factors affecting the performance of Error Correcting Output Codes (ECOC) in multiclass classification problems are the independence of binary classifiers and the problem-dependent coding design. In this paper, we propose an evolutionary algorithm-based approach to the design of an application-dependent codematrix in the ECOC framework. The central idea of this work is to design a three-dimensional codematrix, where the third dimension is the feature space of the problem domain. In order to do that, we consider the feature space in the design process of the codematrix with the aim of improving the independence and accuracy of binary classifiers. The proposed method takes advantage of some basic concepts of ensemble classification, such as diversity of classifiers, and also benefits from the evolutionary approach for optimizing the three-dimensional codematrix, taking into account the problem domain. We provide a set of experimental results using a set of benchmark datasets from the UCI Machine Learning Repository, as well as two real multiclass Computer Vision problems. Both sets of experiments are conducted using two different base learners: Neural Networks and Decision Trees. The results show that the proposed method increases the classification accuracy in comparison with the state-of-the-art ECOC coding techniques. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BGE2013a |
Serial |
2247 |
|
Permanent link to this record |