|
Records |
Links |
|
Author |
Alvaro Cepero; Albert Clapes; Sergio Escalera |
|
|
Title |
Automatic non-verbal communication skills analysis: a quantitative evaluation |
Type |
Journal Article |
|
Year |
2015 |
Publication |
AI Communications |
Abbreviated Journal |
AIC |
|
|
Volume |
28 |
Issue |
1 |
Pages |
87-101 |
|
|
Keywords |
Social signal processing; human behavior analysis; multi-modal data description; multi-modal data fusion; non-verbal communication analysis; e-Learning |
|
|
Abstract |
The oral communication competence is defined on the top of the most relevant skills for one's professional and personal life. Because of the importance of communication in our activities of daily living, it is crucial to study methods to evaluate and provide the necessary feedback that can be used in order to improve these communication capabilities and, therefore, learn how to express ourselves better. In this work, we propose a system capable of evaluating quantitatively the quality of oral presentations in an automatic fashion. The system is based on a multi-modal RGB, depth, and audio data description and a fusion approach in order to recognize behavioral cues and train classifiers able to eventually predict communication quality levels. The performance of the proposed system is tested on a novel dataset containing Bachelor thesis' real defenses, presentations from an 8th semester Bachelor courses, and Master courses' presentations at Universitat de Barcelona. Using as groundtruth the marks assigned by actual instructors, our system achieves high performance categorizing and ranking presentations by their quality, and also making real-valued mark predictions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0921-7126 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ CCE2015 |
Serial |
2549 |
|
Permanent link to this record |
|
|
|
|
Author |
Anastasios Doulamis; Nikolaos Doulamis; Marco Bertini; Jordi Gonzalez; Thomas B. Moeslund |
|
|
Title |
Introduction to the Special Issue on the Analysis and Retrieval of Events/Actions and Workflows in Video Streams |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
75 |
Issue |
22 |
Pages |
14985-14990 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISE; HUPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ DDB2016 |
Serial |
2934 |
|
Permanent link to this record |
|
|
|
|
Author |
Anders Skaarup Johansen; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund |
|
|
Title |
Who Cares about the Weather? Inferring Weather Conditions for Weather-Aware Object Detection in Thermal Images |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Applied Sciences |
Abbreviated Journal |
AS |
|
|
Volume |
13 |
Issue |
18 |
Pages |
|
|
|
Keywords |
thermal; object detection; concept drift; conditioning; weather recognition |
|
|
Abstract |
Deployments of real-world object detection systems often experience a degradation in performance over time due to concept drift. Systems that leverage thermal cameras are especially susceptible because the respective thermal signatures of objects and their surroundings are highly sensitive to environmental changes. In this study, two types of weather-aware latent conditioning methods are investigated. The proposed method aims to guide two object detectors, (YOLOv5 and Deformable DETR) to become weather-aware. This is achieved by leveraging an auxiliary branch that predicts weather-related information while conditioning intermediate layers of the object detector. While the conditioning methods proposed do not directly improve the accuracy of baseline detectors, it can be observed that conditioned networks manage to extract a weather-related signal from the thermal images, thus resulting in a decreased miss rate at the cost of increased false positives. The extracted signal appears noisy and is thus challenging to regress accurately. This is most likely a result of the qualitative nature of the thermal sensor; thus, further work is needed to identify an ideal method for optimizing the conditioning branch, as well as to further improve the accuracy of the system. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ SNE2023 |
Serial |
3983 |
|
Permanent link to this record |
|
|
|
|
Author |
Andre Litvin; Kamal Nasrollahi; Sergio Escalera; Cagri Ozcinar; Thomas B. Moeslund; Gholamreza Anbarjafari |
|
|
Title |
A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
78 |
Issue |
18 |
Pages |
25259–25271 |
|
|
Keywords |
Fully convolutional networks; FusionNet; Thermal imaging; Face recognition |
|
|
Abstract |
This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ LNE2019 |
Serial |
3318 |
|
Permanent link to this record |
|
|
|
|
Author |
Andres Traumann; Gholamreza Anbarjafari; Sergio Escalera |
|
|
Title |
Accurate 3D Measurement Using Optical Depth Information |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Electronic Letters |
Abbreviated Journal |
EL |
|
|
Volume |
51 |
Issue |
18 |
Pages |
1420-1422 |
|
|
Keywords |
|
|
|
Abstract |
A novel three-dimensional measurement technique is proposed. The methodology consists in mapping from the screen coordinates reported by the optical camera to the real world, and integrating distance gradients from the beginning to the end point, while also minimising the error through fitting pixel locations to a smooth curve. The results demonstrate accuracy of less than half a centimetre using Microsoft Kinect II. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ TAE2015 |
Serial |
2647 |
|
Permanent link to this record |