|
Records |
Links |
|
Author  |
Sergio Escalera; Xavier Baro; Jordi Vitria; Petia Radeva; Bogdan Raducanu |


|
|
Title |
Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
12 |
Issue |
2 |
Pages |
1702-1719 |
|
|
Keywords |
|
|
|
Abstract |
IF=1.77 (2010)
Social interactions are a very important component in peopleís lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Timesí Blogging Heads opinion blog.
The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The linksí weights are a measure of the ìinfluenceî a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Molecular Diversity Preservation International |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; OR;HuPBA;MV |
Approved |
no |
|
|
Call Number |
Admin @ si @ EBV2012 |
Serial |
1885 |
|
Permanent link to this record |
|
|
|
|
Author  |
Shifeng Zhang; Ajian Liu; Jun Wan; Yanyan Liang; Guogong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z. Li |


|
|
Title |
CASIA-SURF: A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing |
Type |
Journal |
|
Year |
2020 |
Publication |
IEEE Transactions on Biometrics, Behavior, and Identity Science |
Abbreviated Journal |
TTBIS |
|
|
Volume |
2 |
Issue |
2 |
Pages |
182 - 193 |
|
|
Keywords |
|
|
|
Abstract |
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, existing face anti-spoofing benchmarks have limited number of subjects (≤170) and modalities (≤2), which hinder the further development of the academic community. To facilitate face anti-spoofing research, we introduce a large-scale multi-modal dataset, namely CASIA-SURF, which is the largest publicly available dataset for face anti-spoofing in terms of both subjects and modalities. Specifically, it consists of 1,000 subjects with 21,000 videos and each sample has 3 modalities ( i.e. , RGB, Depth and IR). We also provide comprehensive evaluation metrics, diverse evaluation protocols, training/validation/testing subsets and a measurement tool, developing a new benchmark for face anti-spoofing. Moreover, we present a novel multi-modal multi-scale fusion method as a strong baseline, which performs feature re-weighting to select the more informative channel features while suppressing the less useful ones for each modality across different scales. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability. The dataset is available at https://sites.google.com/qq.com/face-anti-spoofing/welcome/challengecvpr2019?authuser=0 |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ ZLW2020 |
Serial |
3412 |
|
Permanent link to this record |
|
|
|
|
Author  |
Simone Balocco; Carlo Gatta; Francesco Ciompi; A. Wahle; Petia Radeva; S. Carlier; G. Unal; E. Sanidas; J. Mauri; X. Carillo; T. Kovarnik; C. Wang; H. Chen; T. P. Exarchos; D. I. Fotiadis; F. Destrempes; G. Cloutier; Oriol Pujol; Marina Alberti; E. G. Mendizabal-Ruiz; M. Rivera; T. Aksoy; R. W. Downe; I. A. Kakadiaris |


|
|
Title |
Standardized evaluation methodology and reference database for evaluating IVUS image segmentation |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Computerized Medical Imaging and Graphics |
Abbreviated Journal |
CMIG |
|
|
Volume |
38 |
Issue |
2 |
Pages |
70-90 |
|
|
Keywords |
IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation |
|
|
Abstract |
This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated.
We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have
been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be
solved. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; LAMP; HuPBA; 600.046; 600.063; 600.079 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGC2013 |
Serial |
2314 |
|
Permanent link to this record |
|
|
|
|
Author  |
Simone Balocco; Carlo Gatta; Oriol Pujol; J. Mauri; Petia Radeva |

|
|
Title |
SRBF: Speckle Reducing Bilateral Filtering |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Ultrasound in Medicine and Biology |
Abbreviated Journal |
UMB |
|
|
Volume |
36 |
Issue |
8 |
Pages |
1353-1363 |
|
|
Keywords |
|
|
|
Abstract |
Speckle noise negatively affects medical ultrasound image shape interpretation and boundary detection. Speckle removal filters are widely used to selectively remove speckle noise without destroying important image features to enhance object boundaries. In this article, a fully automatic bilateral filter tailored to ultrasound images is proposed. The edge preservation property is obtained by embedding noise statistics in the filter framework. Consequently, the filter is able to tackle the multiplicative behavior modulating the smoothing strength with respect to local statistics. The in silico experiments clearly showed that the speckle reducing bilateral filter (SRBF) has superior performances to most of the state of the art filtering methods. The filter is tested on 50 in vivo US images and its influence on a segmentation task is quantified. The results using SRBF filtered data sets show a superior performance to using oriented anisotropic diffusion filtered images. This improvement is due to the adaptive support of SRBF and the embedded noise statistics, yielding a more homogeneous smoothing. SRBF results in a fully automatic, fast and flexible algorithm potentially suitable in wide ranges of speckle noise sizes, for different medical applications (IVUS, B-mode, 3-D matrix array US). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HUPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ BGP2010 |
Serial |
1314 |
|
Permanent link to this record |
|
|
|
|
Author  |
Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz |


|
|
Title |
Gate-Shift-Fuse for Video Action Recognition |
Type |
Journal Article |
|
Year |
2023 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
45 |
Issue |
9 |
Pages |
10913-10928 |
|
|
Keywords |
Action Recognition; Video Classification; Spatial Gating; Channel Fusion |
|
|
Abstract |
Convolutional Neural Networks are the de facto models for image recognition. However 3D CNNs, the straight forward extension of 2D CNNs for video recognition, have not achieved the same success on standard action recognition benchmarks. One of the main reasons for this reduced performance of 3D CNNs is the increased computational complexity requiring large scale annotated datasets to train them in scale. 3D kernel factorization approaches have been proposed to reduce the complexity of 3D CNNs. Existing kernel factorization approaches follow hand-designed and hard-wired techniques. In this paper we propose Gate-Shift-Fuse (GSF), a novel spatio-temporal feature extraction module which controls interactions in spatio-temporal decomposition and learns to adaptively route features through time and combine them in a data dependent manner. GSF leverages grouped spatial gating to decompose input tensor and channel weighting to fuse the decomposed tensors. GSF can be inserted into existing 2D CNNs to convert them into an efficient and high performing spatio-temporal feature extractor, with negligible parameter and compute overhead. We perform an extensive analysis of GSF using two popular 2D CNN families and achieve state-of-the-art or competitive performance on five standard action recognition benchmarks. |
|
|
Address |
1 Sept. 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no menciona;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SEL2023 |
Serial |
3814 |
|
Permanent link to this record |