toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Penny Tarling; Mauricio Cantor; Albert Clapes; Sergio Escalera edit  doi
openurl 
  Title Deep learning with self-supervision and uncertainty regularization to count fish in underwater images Type Journal Article
  Year 2022 Publication PloS One Abbreviated Journal Plos  
  Volume 17 Issue 5 Pages e0267759  
  Keywords  
  Abstract Effective conservation actions require effective population monitoring. However, accurately counting animals in the wild to inform conservation decision-making is difficult. Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive but created a need to process and analyse this data efficiently. Counting animals from such data is challenging, particularly when densely packed in noisy images. Attempting this manually is slow and expensive, while traditional computer vision methods are limited in their generalisability. Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals. To this end, we employ deep learning, with a density-based regression approach, to count fish in low-resolution sonar images. We introduce a large dataset of sonar videos, deployed to record wild Lebranche mullet schools (Mugil liza), with a subset of 500 labelled images. We utilise abundant unlabelled data in a self-supervised task to improve the supervised counting task. For the first time in this context, by introducing uncertainty quantification, we improve model training and provide an accompanying measure of prediction uncertainty for more informed biological decision-making. Finally, we demonstrate the generalisability of our proposed counting framework through testing it on a recent benchmark dataset of high-resolution annotated underwater images from varying habitats (DeepFish). From experiments on both contrasting datasets, we demonstrate our network outperforms the few other deep learning models implemented for solving this task. By providing an open-source framework along with training data, our study puts forth an efficient deep learning template for crowd counting aquatic animals thereby contributing effective methods to assess natural populations from the ever-increasing visual data.  
  Address  
  Corporate Author Thesis  
  Publisher Public Library of Science Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ TCC2022 Serial 3743  
Permanent link to this record
 

 
Author (up) Pichao Wang; Wanqing Li; Philip Ogunbona; Jun Wan; Sergio Escalera edit   pdf
url  openurl
  Title RGB-D-based Human Motion Recognition with Deep Learning: A Survey Type Journal Article
  Year 2018 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 171 Issue Pages 118-139  
  Keywords Human motion recognition; RGB-D data; Deep learning; Survey  
  Abstract Human motion recognition is one of the most important branches of human-centered research activities. In recent years, motion recognition based on RGB-D data has attracted much attention. Along with the development in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In particular, convolutional neural networks (CNN) have achieved great success for image-based tasks, and recurrent neural networks (RNN) are renowned for sequence-based problems. Specifically, deep learning methods based on the CNN and RNN architectures have been adopted for motion recognition using RGB-D data. In this paper, a detailed overview of recent advances in RGB-D-based motion recognition is presented. The reviewed methods are broadly categorized into four groups, depending on the modality adopted for recognition: RGB-based, depth-based, skeleton-based and RGB+D-based. As a survey focused on the application of deep learning to RGB-D-based motion recognition, we explicitly discuss the advantages and limitations of existing techniques. Particularly, we highlighted the methods of encoding spatial-temporal-structural information inherent in video sequence, and discuss potential directions for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ WLO2018 Serial 3123  
Permanent link to this record
 

 
Author (up) Pierluigi Casale; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Personalization and User Verification in Wearable Systems using Biometric Walking Patterns Type Journal Article
  Year 2012 Publication Personal and Ubiquitous Computing Abbreviated Journal PUC  
  Volume 16 Issue 5 Pages 563-580  
  Keywords  
  Abstract In this article, a novel technique for user’s authentication and verification using gait as a biometric unobtrusive pattern is proposed. The method is based on a two stages pipeline. First, a general activity recognition classifier is personalized for an specific user using a small sample of her/his walking pattern. As a result, the system is much more selective with respect to the new walking pattern. A second stage verifies whether the user is an authorized one or not. This stage is defined as a one-class classification problem. In order to solve this problem, a four-layer architecture is built around the geometric concept of convex hull. This architecture allows to improve robustness to outliers, modeling non-convex shapes, and to take into account temporal coherence information. Two different scenarios are proposed as validation with two different wearable systems. First, a custom high-performance wearable system is built and used in a free environment. A second dataset is acquired from an Android-based commercial device in a ‘wild’ scenario with rough terrains, adversarial conditions, crowded places and obstacles. Results on both systems and datasets are very promising, reducing the verification error rates by an order of magnitude with respect to the state-of-the-art technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1617-4909 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ CPR2012 Serial 1706  
Permanent link to this record
 

 
Author (up) Raquel Justo; Leila Ben Letaifa; Cristina Palmero; Eduardo Gonzalez-Fraile; Anna Torp Johansen; Alain Vazquez; Gennaro Cordasco; Stephan Schlogl; Begoña Fernandez-Ruanova; Micaela Silva; Sergio Escalera; Mikel de Velasco; Joffre Tenorio-Laranga; Anna Esposito; Maria Korsnes; M. Ines Torres edit  url
openurl 
  Title Analysis of the Interaction between Elderly People and a Simulated Virtual Coach, Journal of Ambient Intelligence and Humanized Computing Type Journal Article
  Year 2020 Publication Journal of Ambient Intelligence and Humanized Computing Abbreviated Journal AIHC  
  Volume 11 Issue 12 Pages 6125-6140  
  Keywords  
  Abstract The EMPATHIC project develops and validates new interaction paradigms for personalized virtual coaches (VC) to promote healthy and independent aging. To this end, the work presented in this paper is aimed to analyze the interaction between the EMPATHIC-VC and the users. One of the goals of the project is to ensure an end-user driven design, involving senior users from the beginning and during each phase of the project. Thus, the paper focuses on some sessions where the seniors carried out interactions with a Wizard of Oz driven, simulated system. A coaching strategy based on the GROW model was used throughout these sessions so as to guide interactions and engage the elderly with the goals of the project. In this interaction framework, both the human and the system behavior were analyzed. The way the wizard implements the GROW coaching strategy is a key aspect of the system behavior during the interaction. The language used by the virtual agent as well as his or her physical aspect are also important cues that were analyzed. Regarding the user behavior, the vocal communication provides information about the speaker’s emotional status, that is closely related to human behavior and which can be extracted from the speech and language analysis. In the same way, the analysis of the facial expression, gazes and gestures can provide information on the non verbal human communication even when the user is not talking. In addition, in order to engage senior users, their preferences and likes had to be considered. To this end, the effect of the VC on the users was gathered by means of direct questionnaires. These analyses have shown a positive and calm behavior of users when interacting with the simulated virtual coach as well as some difficulties of the system to develop the proposed coaching strategy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ JLP2020 Serial 3443  
Permanent link to this record
 

 
Author (up) Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  doi
openurl 
  Title Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine Type Journal Article
  Year 2018 Publication Entropy Abbreviated Journal ENTROPY  
  Volume 20 Issue 11 Pages 809  
  Keywords hand sign language; deep learning; restricted Boltzmann machine (RBM); multi-modal; profoundly deaf; noisy image  
  Abstract In this paper, a deep learning approach, Restricted Boltzmann Machine (RBM), is used to perform automatic hand sign language recognition from visual data. We evaluate how RBM, as a deep generative model, is capable of generating the distribution of the input data for an enhanced recognition of unseen data. Two modalities, RGB and Depth, are considered in the model input in three forms: original image, cropped image, and noisy cropped image. Five crops of the input image are used and the hand of these cropped images are detected using Convolutional Neural Network (CNN). After that, three types of the detected hand images are generated for each modality and input to RBMs. The outputs of the RBMs for two modalities are fused in another RBM in order to recognize the output sign label of the input image. The proposed multi-modal model is trained on all and part of the American alphabet and digits of four publicly available datasets. We also evaluate the robustness of the proposal against noise. Experimental results show that the proposed multi-modal model, using crops and the RBM fusing methodology, achieves state-of-the-art results on Massey University Gesture Dataset 2012, American Sign Language (ASL). and Fingerspelling Dataset from the University of Surrey’s Center for Vision, Speech and Signal Processing, NYU, and ASL Fingerspelling A datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ RKE2018 Serial 3198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: