|
Records |
Links |
|
Author |
Juan Jose Rubio; Takahiro Kashiwa; Teera Laiteerapong; Wenlong Deng; Kohei Nagai; Sergio Escalera; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger |
|
|
Title |
Multi-class structural damage segmentation using fully convolutional networks |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Computers in Industry |
Abbreviated Journal |
COMPUTIND |
|
|
Volume |
112 |
Issue |
|
Pages |
103121 |
|
|
Keywords |
Bridge damage detection; Deep learning; Semantic segmentation |
|
|
Abstract |
Structural Health Monitoring (SHM) has benefited from computer vision and more recently, Deep Learning approaches, to accurately estimate the state of deterioration of infrastructure. In our work, we test Fully Convolutional Networks (FCNs) with a dataset of deck areas of bridges for damage segmentation. We create a dataset for delamination and rebar exposure that has been collected from inspection records of bridges in Niigata Prefecture, Japan. The dataset consists of 734 images with three labels per image, which makes it the largest dataset of images of bridge deck damage. This data allows us to estimate the performance of our method based on regions of agreement, which emulates the uncertainty of in-field inspections. We demonstrate the practicality of FCNs to perform automated semantic segmentation of surface damages. Our model achieves a mean accuracy of 89.7% for delamination and 78.4% for rebar exposure, and a weighted F1 score of 81.9%. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKL2019 |
Serial |
3315 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Seabra; Francesco Ciompi; Oriol Pujol; J. Mauri; Petia Radeva; Joao Sanchez |
|
|
Title |
Rayleigh Mixture Model for Plaque Characterization in Intravascular Ultrasound |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Biomedical Engineering |
Abbreviated Journal |
TBME |
|
|
Volume |
58 |
Issue |
5 |
Pages |
1314-1324 |
|
|
Keywords |
|
|
|
Abstract |
Vulnerable plaques are the major cause of carotid and coronary vascular problems, such as heart attack or stroke. A correct modeling of plaque echomorphology and composition can help the identification of such lesions. The Rayleigh distribution is widely used to describe (nearly) homogeneous areas in ultrasound images. Since plaques may contain tissues with heterogeneous regions, more complex distributions depending on multiple parameters are usually needed, such as Rice, K or Nakagami distributions. In such cases, the problem formulation becomes more complex, and the optimization procedure to estimate the plaque echomorphology is more difficult. Here, we propose to model the tissue echomorphology by means of a mixture of Rayleigh distributions, known as the Rayleigh mixture model (RMM). The problem formulation is still simple, but its ability to describe complex textural patterns is very powerful. In this paper, we present a method for the automatic estimation of the RMM mixture parameters by means of the expectation maximization algorithm, which aims at characterizing tissue echomorphology in ultrasound (US). The performance of the proposed model is evaluated with a database of in vitro intravascular US cases. We show that the mixture coefficients and Rayleigh parameters explicitly derived from the mixture model are able to accurately describe different plaque types and to significantly improve the characterization performance of an already existing methodology. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ SCP2011 |
Serial |
1712 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Garcia-Rodriguez; Isabelle Guyon; Sergio Escalera; Alexandra Psarrou; Andrew Lewis; Miguel Cazorla |
|
|
Title |
Editorial: Special Issue on Computational Intelligence for Vision and Robotics |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Neural Computing and Applications |
Abbreviated Journal |
Neural Computing and Applications |
|
|
Volume |
28 |
Issue |
5 |
Pages |
853–854 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; no menciona |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGE2017 |
Serial |
2845 |
|
Permanent link to this record |
|
|
|
|
Author |
Jordi Esquirol; Cristina Palmero; Vanessa Bayo; Miquel Angel Cos; Sergio Escalera; David Sanchez; Maider Sanchez; Noelia Serrano; Mireia Relats |
|
|
Title |
Automatic RBG-depth-pressure anthropometric analysis and individualised sleep solution prescription |
Type |
Journal |
|
Year |
2017 |
Publication |
Journal of Medical Engineering & Technology |
Abbreviated Journal |
JMET |
|
|
Volume |
41 |
Issue |
6 |
Pages |
486-497 |
|
|
Keywords |
|
|
|
Abstract |
INTRODUCTION:
Sleep surfaces must adapt to individual somatotypic features to maintain a comfortable, convenient and healthy sleep, preventing diseases and injuries. Individually determining the most adequate rest surface can often be a complex and subjective question.
OBJECTIVES:
To design and validate an automatic multimodal somatotype determination model to automatically recommend an individually designed mattress-topper-pillow combination.
METHODS:
Design and validation of an automated prescription model for an individualised sleep system is performed through a single-image 2 D-3 D analysis and body pressure distribution, to objectively determine optimal individual sleep surfaces combining five different mattress densities, three different toppers and three cervical pillows.
RESULTS:
A final study (n = 151) and re-analysis (n = 117) defined and validated the model, showing high correlations between calculated and real data (>85% in height and body circumferences, 89.9% in weight, 80.4% in body mass index and more than 70% in morphotype categorisation).
CONCLUSIONS:
Somatotype determination model can accurately prescribe an individualised sleep solution. This can be useful for healthy people and for health centres that need to adapt sleep surfaces to people with special needs. Next steps will increase model's accuracy and analise, if this prescribed individualised sleep solution can improve sleep quantity and quality; additionally, future studies will adapt the model to mattresses with technological improvements, tailor-made production and will define interfaces for people with special needs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no menciona;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ EPB2017 |
Serial |
3010 |
|
Permanent link to this record |
|
|
|
|
Author |
Joakim Bruslund Haurum; Meysam Madadi; Sergio Escalera; Thomas B. Moeslund |
|
|
Title |
Multi-scale hybrid vision transformer and Sinkhorn tokenizer for sewer defect classification |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Automation in Construction |
Abbreviated Journal |
AC |
|
|
Volume |
144 |
Issue |
|
Pages |
104614 |
|
|
Keywords |
Sewer Defect Classification; Vision Transformers; Sinkhorn-Knopp; Convolutional Neural Networks; Closed-Circuit Television; Sewer Inspection |
|
|
Abstract |
A crucial part of image classification consists of capturing non-local spatial semantics of image content. This paper describes the multi-scale hybrid vision transformer (MSHViT), an extension of the classical convolutional neural network (CNN) backbone, for multi-label sewer defect classification. To better model spatial semantics in the images, features are aggregated at different scales non-locally through the use of a lightweight vision transformer, and a smaller set of tokens was produced through a novel Sinkhorn clustering-based tokenizer using distinct cluster centers. The proposed MSHViT and Sinkhorn tokenizer were evaluated on the Sewer-ML multi-label sewer defect classification dataset, showing consistent performance improvements of up to 2.53 percentage points. |
|
|
Address |
Dec 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ BME2022c |
Serial |
3780 |
|
Permanent link to this record |