|
Records |
Links |
|
Author |
Zahra Raisi-Estabragh; Carlos Martin-Isla; Louise Nissen; Liliana Szabo; Victor M. Campello; Sergio Escalera; Simon Winther; Morten Bottcher; Karim Lekadir; and Steffen E. Petersen |

|
|
Title |
Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Frontiers in Cardiovascular Medicine |
Abbreviated Journal |
FCM |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RMN2023 |
Serial |
3937 |
|
Permanent link to this record |
|
|
|
|
Author |
Adrien Pavao; Isabelle Guyon; Anne-Catherine Letournel; Dinh-Tuan Tran; Xavier Baro; Hugo Jair Escalante; Sergio Escalera; Tyler Thomas; Zhen Xu |

|
|
Title |
CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Journal of Machine Learning Research |
Abbreviated Journal |
JMLR |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
CodaLab Competitions is an open source web platform designed to help data scientists and research teams to crowd-source the resolution of machine learning problems through the organization of competitions, also called challenges or contests. CodaLab Competitions provides useful features such as multiple phases, results and code submissions, multi-score leaderboards, and jobs running
inside Docker containers. The platform is very flexible and can handle large scale experiments, by allowing organizers to upload large datasets and provide their own CPU or GPU compute workers. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ PGL2023 |
Serial |
3973 |
|
Permanent link to this record |
|
|
|
|
Author |
Anders Skaarup Johansen; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund |


|
|
Title |
Who Cares about the Weather? Inferring Weather Conditions for Weather-Aware Object Detection in Thermal Images |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Applied Sciences |
Abbreviated Journal |
AS |
|
|
Volume |
13 |
Issue |
18 |
Pages |
|
|
|
Keywords |
thermal; object detection; concept drift; conditioning; weather recognition |
|
|
Abstract |
Deployments of real-world object detection systems often experience a degradation in performance over time due to concept drift. Systems that leverage thermal cameras are especially susceptible because the respective thermal signatures of objects and their surroundings are highly sensitive to environmental changes. In this study, two types of weather-aware latent conditioning methods are investigated. The proposed method aims to guide two object detectors, (YOLOv5 and Deformable DETR) to become weather-aware. This is achieved by leveraging an auxiliary branch that predicts weather-related information while conditioning intermediate layers of the object detector. While the conditioning methods proposed do not directly improve the accuracy of baseline detectors, it can be observed that conditioned networks manage to extract a weather-related signal from the thermal images, thus resulting in a decreased miss rate at the cost of increased false positives. The extracted signal appears noisy and is thus challenging to regress accurately. This is most likely a result of the qualitative nature of the thermal sensor; thus, further work is needed to identify an ideal method for optimizing the conditioning branch, as well as to further improve the accuracy of the system. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SNE2023 |
Serial |
3983 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |

|
|
Title |
A transformer model for boundary detection in continuous sign language |
Type |
Journal Article |
|
Year |
2024 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Sign Language Recognition (SLR) has garnered significant attention from researchers in recent years, particularly the intricate domain of Continuous Sign Language Recognition (CSLR), which presents heightened complexity compared to Isolated Sign Language Recognition (ISLR). One of the prominent challenges in CSLR pertains to accurately detecting the boundaries of isolated signs within a continuous video stream. Additionally, the reliance on handcrafted features in existing models poses a challenge to achieving optimal accuracy. To surmount these challenges, we propose a novel approach utilizing a Transformer-based model. Unlike traditional models, our approach focuses on enhancing accuracy while eliminating the need for handcrafted features. The Transformer model is employed for both ISLR and CSLR. The training process involves using isolated sign videos, where hand keypoint features extracted from the input video are enriched using the Transformer model. Subsequently, these enriched features are forwarded to the final classification layer. The trained model, coupled with a post-processing method, is then applied to detect isolated sign boundaries within continuous sign videos. The evaluation of our model is conducted on two distinct datasets, including both continuous signs and their corresponding isolated signs, demonstrates promising results. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2024 |
Serial |
4016 |
|
Permanent link to this record |
|
|
|
|
Author |
Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guçlu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia Liem; Marcel A. J. Van Gerven; Rob Van Lier |


|
|
Title |
Modeling, Recognizing, and Explaining Apparent Personality from Videos |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
13 |
Issue |
2 |
Pages |
894-911 |
|
|
Keywords |
|
|
|
Abstract |
Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future. |
|
|
Address  |
1 April-June 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no menciona;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ EKS2022 |
Serial |
3406 |
|
Permanent link to this record |