|
Records |
Links |
|
Author |
Sergio Escalera; Alicia Fornes; O. Pujol; Petia Radeva; Gemma Sanchez; Josep Llados |
|
|
Title |
Blurred Shape Model for Binary and Grey-level Symbol Recognition |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
30 |
Issue |
15 |
Pages |
1424–1433 |
|
|
Keywords |
|
|
|
Abstract |
Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; DAG; MILAB |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EFP2009a |
Serial |
1180 |
|
Permanent link to this record |
|
|
|
|
Author |
Carlo Gatta; Oriol Pujol; Oriol Rodriguez-Leor; J. M. Ferre; Petia Radeva |
|
|
Title |
Fast Rigid Registration of Vascular Structures in IVUS Sequences |
Type |
Journal Article |
|
Year |
2009 |
Publication |
IEEE Transactions on Information Technology in Biomedicine |
Abbreviated Journal |
|
|
|
Volume |
13 |
Issue |
6 |
Pages |
106-1011 |
|
|
Keywords |
|
|
|
Abstract |
Intravascular ultrasound (IVUS) technology permits visualization of high-resolution images of internal vascular structures. IVUS is a unique image-guiding tool to display longitudinal view of the vessels, and estimate the length and size of vascular structures with the goal of accurate diagnosis. Unfortunately, due to pulsatile contraction and expansion of the heart, the captured images are affected by different motion artifacts that make visual inspection difficult. In this paper, we propose an efficient algorithm that aligns vascular structures and strongly reduces the saw-shaped oscillation, simplifying the inspection of longitudinal cuts; it reduces the motion artifacts caused by the displacement of the catheter in the short-axis plane and the catheter rotation due to vessel tortuosity. The algorithm prototype aligns 3.16 frames/s and clearly outperforms state-of-the-art methods with similar computational cost. The speed of the algorithm is crucial since it allows to inspect the corrected sequence during patient intervention. Moreover, we improved an indirect methodology for IVUS rigid registration algorithm evaluation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1089-7771 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ GPL2009 |
Serial |
1250 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Pujol; David Masip |
|
|
Title |
Geometry-Based Ensembles: Toward a Structural Characterization of the Classification Boundary |
Type |
Journal Article |
|
Year |
2009 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
31 |
Issue |
6 |
Pages |
1140–1146 |
|
|
Keywords |
|
|
|
Abstract |
This article introduces a novel binary discriminative learning technique based on the approximation of the non-linear decision boundary by a piece-wise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points – points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule. As a result, a very simple and robust classifier with a strong geometrical meaning and non-linear behavior is obtained. The simplicity of the method allows its extension to cope with some of nowadays machine learning challenges, such as online learning, large scale learning or parallelization, with linear computational complexity. We validate our approach on the UCI database. Finally, we apply our technique in online and large scale scenarios, and in six real life computer vision and pattern recognition problems: gender recognition, intravascular ultrasound tissue classification, speed traffic sign detection, Chagas' disease severity detection, clef classification and action recognition using a 3D accelerometer data. The results are promising and this paper opens a line of research that deserves further attention |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
OR;HuPBA;MV |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ PuM2009 |
Serial |
1252 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; J. Mauri; Petia Radeva |
|
|
Title |
Intravascular Ultrasound Tissue Characterization with Sub-class Error-Correcting Output Codes |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Journal of Signal Processing Systems |
Abbreviated Journal |
|
|
|
Volume |
55 |
Issue |
1-3 |
Pages |
35–47 |
|
|
Keywords |
|
|
|
Abstract |
Intravascular ultrasound (IVUS) represents a powerful imaging technique to explore coronary vessels and to study their morphology and histologic properties. In this paper, we characterize different tissues based on radial frequency, texture-based, and combined features. To deal with the classification of multiple tissues, we require the use of robust multi-class learning techniques. In this sense, error-correcting output codes (ECOC) show to robustly combine binary classifiers to solve multi-class problems. In this context, we propose a strategy to model multi-class classification tasks using sub-classes information in the ECOC framework. The new strategy splits the classes into different sub-sets according to the applied base classifier. Complex IVUS data sets containing overlapping data are learnt by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. The method automatically characterizes different tissues, showing performance improvements over the state-of-the-art ECOC techniques for different base classifiers. Furthermore, the combination of RF and texture-based features also shows improvements over the state-of-the-art approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1939-8018 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPM2009 |
Serial |
1258 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva |
|
|
Title |
Traffic sign recognition system with β -correction |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Machine Vision and Applications |
Abbreviated Journal |
MVA |
|
|
Volume |
21 |
Issue |
2 |
Pages |
99–111 |
|
|
Keywords |
|
|
|
Abstract |
Traffic sign classification represents a classical application of multi-object recognition processing in uncontrolled adverse environments. Lack of visibility, illumination changes, and partial occlusions are just a few problems. In this paper, we introduce a novel system for multi-class classification of traffic signs based on error correcting output codes (ECOC). ECOC is based on an ensemble of binary classifiers that are trained on bi-partition of classes. We classify a wide set of traffic signs types using robust error correcting codings. Moreover, we introduce the novel β-correction decoding strategy that outperforms the state-of-the-art decoding techniques, classifying a high number of classes with great success. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0932-8092 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HUPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2010a |
Serial |
1276 |
|
Permanent link to this record |