toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Escalera; Ana Puig; Oscar Amoros; Maria Salamo edit  doi
openurl 
  Title Intelligent GPGPU Classification in Volume Visualization: a framework based on Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Computer Graphics Forum Abbreviated Journal CGF  
  Volume 30 Issue 7 Pages 2107-2115  
  Keywords  
  Abstract (up) IF JCR 1.455 2010 25/99
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a framework of intelligent methods to label on-demand multiple regions of interest. These methods can be split into a two-level GPU-based labelling algorithm that computes in time of rendering a set of labelled structures using the Machine Learning Error-Correcting Output Codes (ECOC) framework. In a pre-processing step, ECOC trains a set of Adaboost binary classifiers from a reduced pre-labelled data set. Then, at the testing stage, each classifier is independently applied on the features of a set of unlabelled samples and combined to perform multi-class labelling. We also propose an alternative representation of these classifiers that allows to highly parallelize the testing stage. To exploit that parallelism we implemented the testing stage in GPU-OpenCL. The empirical results on different data sets for several volume structures shows high computational performance and classification accuracy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA Approved no  
  Call Number Admin @ si @ EPA2011 Serial 1881  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Sergio Escalera; Xavier Baro; Petia Radeva; Jordi Vitria; Oriol Pujol edit  doi
openurl 
  Title Minimal Design of Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 33 Issue 6 Pages 693-702  
  Keywords Multi-class classification; Error-correcting output codes; Ensemble of classifiers  
  Abstract (up) IF JCR CCIA 1.303 2009 54/103
The classification of large number of object categories is a challenging trend in the pattern recognition field. In literature, this is often addressed using an ensemble of classifiers. In this scope, the Error-correcting output codes framework has demonstrated to be a powerful tool for combining classifiers. However, most state-of-the-art ECOC approaches use a linear or exponential number of classifiers, making the discrimination of a large number of classes unfeasible. In this paper, we explore and propose a minimal design of ECOC in terms of the number of classifiers. Evolutionary computation is used for tuning the parameters of the classifiers and looking for the best minimal ECOC code configuration. The results over several public UCI datasets and different multi-class computer vision problems show that the proposed methodology obtains comparable (even better) results than state-of-the-art ECOC methodologies with far less number of dichotomizers.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ BEB2011a Serial 1800  
Permanent link to this record
 

 
Author Sergio Escalera; David Masip; Eloi Puertas; Petia Radeva; Oriol Pujol edit  doi
openurl 
  Title Online Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 32 Issue 3 Pages 458-467  
  Keywords  
  Abstract (up) IF JCR CCIA 1.303 2009 54/103
This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem independent codings one-versus-all and one-versus-one is introduced. Furthermore, two new codings are proposed, unbalanced online ECOC and a problem dependent online ECOC. This last online coding technique takes advantage of the problem data for minimizing the number of dichotomizers used in the ECOC framework while preserving a high accuracy. These techniques are validated on an online setting of 11 data sets from UCI database and applied to two real machine vision applications: traffic sign recognition and face recognition. As a result, the online ECOC techniques proposed provide a feasible and robust way for handling new classes using any base classifier.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication North Holland Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ EMP2011 Serial 1714  
Permanent link to this record
 

 
Author Maria Salamo; Sergio Escalera edit  doi
openurl 
  Title Increasing Retrieval Quality in Conversational Recommenders Type Journal Article
  Year 2011 Publication IEEE Transactions on Knowledge and Data Engineering Abbreviated Journal TKDE  
  Volume 99 Issue Pages 1-1  
  Keywords  
  Abstract (up) IF JCR CCIA 2.286 2009 24/103
JCR Impact Factor 2010: 1.851
A major task of research in conversational recommender systems is personalization. Critiquing is a common and powerful form of feedback, where a user can express her feature preferences by applying a series of directional critiques over the recommendations instead of providing specific preference values. Incremental Critiquing is a conversational recommender system that uses critiquing as a feedback to efficiently personalize products. The expectation is that in each cycle the system retrieves the products that best satisfy the user’s soft product preferences from a minimal information input. In this paper, we present a novel technique that increases retrieval quality based on a combination of compatibility and similarity scores. Under the hypothesis that a user learns Turing the recommendation process, we propose two novel exponential reinforcement learning approaches for compatibility that take into account both the instant at which the user makes a critique and the number of satisfied critiques. Moreover, we consider that the impact of features on the similarity differs according to the preferences manifested by the user. We propose a global weighting approach that uses a common weight for nearest cases in order to focus on groups of relevant products. We show that our methodology significantly improves recommendation efficiency in four data sets of different sizes in terms of session length in comparison with state-of-the-art approaches. Moreover, our recommender shows higher robustness against noisy user data when compared to classical approaches
 
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1041-4347 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA Approved no  
  Call Number Admin @ si @ SaE2011 Serial 1713  
Permanent link to this record
 

 
Author Sergio Escalera; Xavier Baro; Jordi Vitria; Petia Radeva; Bogdan Raducanu edit   pdf
doi  openurl
  Title Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue 2 Pages 1702-1719  
  Keywords  
  Abstract (up) IF=1.77 (2010)
Social interactions are a very important component in peopleís lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Timesí Blogging Heads opinion blog.
The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The linksí weights are a measure of the ìinfluenceî a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
 
  Address  
  Corporate Author Thesis  
  Publisher Molecular Diversity Preservation International Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ EBV2012 Serial 1885  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: