|
Records |
Links |
|
Author |
Thomas B. Moeslund; Sergio Escalera; Gholamreza Anbarjafari; Kamal Nasrollahi; Jun Wan |
|
|
Title |
Statistical Machine Learning for Human Behaviour Analysis |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Entropy |
Abbreviated Journal |
ENTROPY |
|
|
Volume |
25 |
Issue |
5 |
Pages |
530 |
|
|
Keywords |
action recognition; emotion recognition; privacy-aware |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ MEA2020 |
Serial |
3441 |
|
Permanent link to this record |
|
|
|
|
Author |
Zahra Raisi-Estabragh; Carlos Martin-Isla; Louise Nissen; Liliana Szabo; Victor M. Campello; Sergio Escalera; Simon Winther; Morten Bottcher; Karim Lekadir; and Steffen E. Petersen |
|
|
Title |
Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Frontiers in Cardiovascular Medicine |
Abbreviated Journal |
FCM |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RMN2023 |
Serial |
3937 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva |
|
|
Title |
Error-Correcting Output Codes Library |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Journal of Machine Learning Research |
Abbreviated Journal |
JMLR |
|
|
Volume |
11 |
Issue |
|
Pages |
661-664 |
|
|
Keywords |
|
|
|
Abstract |
(Feb):661−664
In this paper, we present an open source Error-Correcting Output Codes (ECOC) library. The ECOC framework is a powerful tool to deal with multi-class categorization problems. This library contains both state-of-the-art coding (one-versus-one, one-versus-all, dense random, sparse random, DECOC, forest-ECOC, and ECOC-ONE) and decoding designs (hamming, euclidean, inverse hamming, laplacian, β-density, attenuated, loss-based, probabilistic kernel-based, and loss-weighted) with the parameters defined by the authors, as well as the option to include your own coding, decoding, and base classifier. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1532-4435 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HUPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2010c |
Serial |
1286 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva |
|
|
Title |
On the Decoding Process in Ternary Error-Correcting Output Codes |
Type |
Journal Article |
|
Year |
2010 |
Publication |
IEEE on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
32 |
Issue |
1 |
Pages |
120–134 |
|
|
Keywords |
|
|
|
Abstract |
A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-correcting output codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a ldquodo not carerdquo symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI machine learning repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HUPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2010b |
Serial |
1277 |
|
Permanent link to this record |
|
|
|
|
Author |
Joakim Bruslund Haurum; Meysam Madadi; Sergio Escalera; Thomas B. Moeslund |
|
|
Title |
Multi-scale hybrid vision transformer and Sinkhorn tokenizer for sewer defect classification |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Automation in Construction |
Abbreviated Journal |
AC |
|
|
Volume |
144 |
Issue |
|
Pages |
104614 |
|
|
Keywords |
Sewer Defect Classification; Vision Transformers; Sinkhorn-Knopp; Convolutional Neural Networks; Closed-Circuit Television; Sewer Inspection |
|
|
Abstract |
A crucial part of image classification consists of capturing non-local spatial semantics of image content. This paper describes the multi-scale hybrid vision transformer (MSHViT), an extension of the classical convolutional neural network (CNN) backbone, for multi-label sewer defect classification. To better model spatial semantics in the images, features are aggregated at different scales non-locally through the use of a lightweight vision transformer, and a smaller set of tokens was produced through a novel Sinkhorn clustering-based tokenizer using distinct cluster centers. The proposed MSHViT and Sinkhorn tokenizer were evaluated on the Sewer-ML multi-label sewer defect classification dataset, showing consistent performance improvements of up to 2.53 percentage points. |
|
|
Address |
Dec 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ BME2022c |
Serial |
3780 |
|
Permanent link to this record |