toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Hao Fang; Ajian Liu; Jun Wan; Sergio Escalera; Chenxu Zhao; Xu Zhang; Stan Z Li; Zhen Lei edit   pdf
url  openurl
  Title Surveillance Face Anti-spoofing Type Journal Article
  Year 2024 Publication IEEE Transactions on Information Forensics and Security Abbreviated Journal TIFS  
  Volume 19 Issue Pages 1535-1546  
  Keywords  
  Abstract (up) Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA;MILAB Approved no  
  Call Number Admin @ si @ FLW2024 Serial 3869  
Permanent link to this record
 

 
Author Ajian Liu; Xuan Li; Jun Wan; Yanyan Liang; Sergio Escalera; Hugo Jair Escalante; Meysam Madadi; Yi Jin; Zhuoyuan Wu; Xiaogang Yu; Zichang Tan; Qi Yuan; Ruikun Yang; Benjia Zhou; Guodong Guo; Stan Z. Li edit   pdf
url  openurl
  Title Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review Type Journal Article
  Year 2020 Publication IET Biometrics Abbreviated Journal BIO  
  Volume 10 Issue 1 Pages 24-43  
  Keywords  
  Abstract (up) Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has %possessed achieved impressive progress recently due the excellent performance of deep neural networks and the availability of large datasets. Although ethnic bias has been verified to severely affect the performance of face recognition systems, it still remains an open research problem in face anti-spoofing. Recently, a multi-ethnic face anti-spoofing dataset, CASIA-SURF CeFA, has been released with the goal of measuring the ethnic bias. It is the largest up to date cross-ethnicity face anti-spoofing dataset covering 3 ethnicities, 3 modalities, 1,607 subjects, 2D plus 3D attack types, and the first dataset including explicit ethnic labels among the recently released datasets for face anti-spoofing. We organized the Chalearn Face Anti-spoofing Attack Detection Challenge which consists of single-modal (e.g., RGB) and multi-modal (e.g., RGB, Depth, Infrared (IR)) tracks around this novel resource to boost research aiming to alleviate the ethnic bias. Both tracks have attracted 340 teams in the development stage, and finally 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively. All the results were verified and re-ran by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ LLW2020b Serial 3523  
Permanent link to this record
 

 
Author Shifeng Zhang; Ajian Liu; Jun Wan; Yanyan Liang; Guogong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z. Li edit  url
doi  openurl
  Title CASIA-SURF: A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing Type Journal
  Year 2020 Publication IEEE Transactions on Biometrics, Behavior, and Identity Science Abbreviated Journal TTBIS  
  Volume 2 Issue 2 Pages 182 - 193  
  Keywords  
  Abstract (up) Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, existing face anti-spoofing benchmarks have limited number of subjects (≤170) and modalities (≤2), which hinder the further development of the academic community. To facilitate face anti-spoofing research, we introduce a large-scale multi-modal dataset, namely CASIA-SURF, which is the largest publicly available dataset for face anti-spoofing in terms of both subjects and modalities. Specifically, it consists of 1,000 subjects with 21,000 videos and each sample has 3 modalities ( i.e. , RGB, Depth and IR). We also provide comprehensive evaluation metrics, diverse evaluation protocols, training/validation/testing subsets and a measurement tool, developing a new benchmark for face anti-spoofing. Moreover, we present a novel multi-modal multi-scale fusion method as a strong baseline, which performs feature re-weighting to select the more informative channel features while suppressing the less useful ones for each modality across different scales. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability. The dataset is available at https://sites.google.com/qq.com/face-anti-spoofing/welcome/challengecvpr2019?authuser=0  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ ZLW2020 Serial 3412  
Permanent link to this record
 

 
Author Ajian Liu; Chenxu Zhao; Zitong Yu; Jun Wan; Anyang Su; Xing Liu; Zichang Tan; Sergio Escalera; Junliang Xing; Yanyan Liang; Guodong Guo; Zhen Lei; Stan Z. Li; Shenshen Du edit  doi
openurl 
  Title Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face Presentation Attack Detection Type Journal Article
  Year 2022 Publication IEEE Transactions on Information Forensics and Security Abbreviated Journal TIForensicSEC  
  Volume 17 Issue Pages 2497 - 2507  
  Keywords  
  Abstract (up) Face presentation attack detection (PAD) is essential to secure face recognition systems primarily from high-fidelity mask attacks. Most existing 3D mask PAD benchmarks suffer from several drawbacks: 1) a limited number of mask identities, types of sensors, and a total number of videos; 2) low-fidelity quality of facial masks. Basic deep models and remote photoplethysmography (rPPG) methods achieved acceptable performance on these benchmarks but still far from the needs of practical scenarios. To bridge the gap to real-world applications, we introduce a large-scale Hi gh- Fi delity Mask dataset, namely HiFiMask . Specifically, a total amount of 54,600 videos are recorded from 75 subjects with 225 realistic masks by 7 new kinds of sensors. Along with the dataset, we propose a novel C ontrastive C ontext-aware L earning (CCL) framework. CCL is a new training methodology for supervised PAD tasks, which is able to learn by leveraging rich contexts accurately (e.g., subjects, mask material and lighting) among pairs of live faces and high-fidelity mask attacks. Extensive experimental evaluations on HiFiMask and three additional 3D mask datasets demonstrate the effectiveness of our method. The codes and dataset will be released soon.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ LZY2022 Serial 3778  
Permanent link to this record
 

 
Author Dorota Kaminska; Kadir Aktas; Davit Rizhinashvili; Danila Kuklyanov; Abdallah Hussein Sham; Sergio Escalera; Kamal Nasrollahi; Thomas B. Moeslund; Gholamreza Anbarjafari edit   pdf
url  openurl
  Title Two-stage Recognition and Beyond for Compound Facial Emotion Recognition Type Journal Article
  Year 2021 Publication Electronics Abbreviated Journal ELEC  
  Volume 10 Issue 22 Pages 2847  
  Keywords compound emotion recognition; facial expression recognition; dominant and complementary emotion recognition; deep learning  
  Abstract (up) Facial emotion recognition is an inherently complex problem due to individual diversity in facial features and racial and cultural differences. Moreover, facial expressions typically reflect the mixture of people’s emotional statuses, which can be expressed using compound emotions. Compound facial emotion recognition makes the problem even more difficult because the discrimination between dominant and complementary emotions is usually weak. We have created a database that includes 31,250 facial images with different emotions of 115 subjects whose gender distribution is almost uniform to address compound emotion recognition. In addition, we have organized a competition based on the proposed dataset, held at FG workshop 2020. This paper analyzes the winner’s approach—a two-stage recognition method (1st stage, coarse recognition; 2nd stage, fine recognition), which enhances the classification of symmetrical emotion labels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ KAR2021 Serial 3642  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: