|
Records |
Links |
|
Author |
Wenlong Deng; Yongli Mou; Takahiro Kashiwa; Sergio Escalera; Kohei Nagai; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger |

|
|
Title |
Vision based Pixel-level Bridge Structural Damage Detection Using a Link ASPP Network |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Automation in Construction |
Abbreviated Journal  |
AC |
|
|
Volume |
110 |
Issue |
|
Pages |
102973 |
|
|
Keywords |
Semantic image segmentation; Deep learning |
|
|
Abstract |
Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface structural damage detection, such as delamination and rebar exposure. It is well known that the quality of a deep learning model is highly dependent on the quality of the training dataset. Bridge damage detection, our application domain, has the following main challenges: (i) labeling the damages requires knowledgeable civil engineering professionals, which makes it difficult to collect a large annotated dataset; (ii) the damage area could be very small, whereas the background area is large, which creates an unbalanced training environment; (iii) due to the difficulty to exactly determine the extension of the damage, there is often a variation among different labelers who perform pixel-wise labeling. In this paper, we propose a novel model for bridge structural damage detection to address the first two challenges. This paper follows the idea of an atrous spatial pyramid pooling (ASPP) module that is designed as a novel network for bridge damage detection. Further, we introduce the weight balanced Intersection over Union (IoU) loss function to achieve accurate segmentation on a highly unbalanced small dataset. The experimental results show that (i) the IoU loss function improves the overall performance of damage detection, as compared to cross entropy loss or focal loss, and (ii) the proposed model has a better ability to detect a minority class than other light segmentation networks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMK2020 |
Serial |
3314 |
|
Permanent link to this record |
|
|
|
|
Author |
Joakim Bruslund Haurum; Meysam Madadi; Sergio Escalera; Thomas B. Moeslund |

|
|
Title |
Multi-scale hybrid vision transformer and Sinkhorn tokenizer for sewer defect classification |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Automation in Construction |
Abbreviated Journal  |
AC |
|
|
Volume |
144 |
Issue |
|
Pages |
104614 |
|
|
Keywords |
Sewer Defect Classification; Vision Transformers; Sinkhorn-Knopp; Convolutional Neural Networks; Closed-Circuit Television; Sewer Inspection |
|
|
Abstract |
A crucial part of image classification consists of capturing non-local spatial semantics of image content. This paper describes the multi-scale hybrid vision transformer (MSHViT), an extension of the classical convolutional neural network (CNN) backbone, for multi-label sewer defect classification. To better model spatial semantics in the images, features are aggregated at different scales non-locally through the use of a lightweight vision transformer, and a smaller set of tokens was produced through a novel Sinkhorn clustering-based tokenizer using distinct cluster centers. The proposed MSHViT and Sinkhorn tokenizer were evaluated on the Sewer-ML multi-label sewer defect classification dataset, showing consistent performance improvements of up to 2.53 percentage points. |
|
|
Address |
Dec 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ BME2022c |
Serial |
3780 |
|
Permanent link to this record |
|
|
|
|
Author |
Jianzhy Guo; Zhen Lei; Jun Wan; Egils Avots; Noushin Hajarolasvadi; Boris Knyazev; Artem Kuharenko; Julio C. S. Jacques Junior; Xavier Baro; Hasan Demirel; Sergio Escalera; Juri Allik; Gholamreza Anbarjafari |

|
|
Title |
Dominant and Complementary Emotion Recognition from Still Images of Faces |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Access |
Abbreviated Journal  |
ACCESS |
|
|
Volume |
6 |
Issue |
|
Pages |
26391 - 26403 |
|
|
Keywords |
|
|
|
Abstract |
Emotion recognition has a key role in affective computing. Recently, fine-grained emotion analysis, such as compound facial expression of emotions, has attracted high interest of researchers working on affective computing. A compound facial emotion includes dominant and complementary emotions (e.g., happily-disgusted and sadly-fearful), which is more detailed than the seven classical facial emotions (e.g., happy, disgust, and so on). Current studies on compound emotions are limited to use data sets with limited number of categories and unbalanced data distributions, with labels obtained automatically by machine learning-based algorithms which could lead to inaccuracies. To address these problems, we released the iCV-MEFED data set, which includes 50 classes of compound emotions and labels assessed by psychologists. The task is challenging due to high similarities of compound facial emotions from different categories. In addition, we have organized a challenge based on the proposed iCV-MEFED data set, held at FG workshop 2017. In this paper, we analyze the top three winner methods and perform further detailed experiments on the proposed data set. Experiments indicate that pairs of compound emotion (e.g., surprisingly-happy vs happily-surprised) are more difficult to be recognized if compared with the seven basic emotions. However, we hope the proposed data set can help to pave the way for further research on compound facial emotion recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ GLW2018 |
Serial |
3122 |
|
Permanent link to this record |
|
|
|
|
Author |
Alvaro Cepero; Albert Clapes; Sergio Escalera |


|
|
Title |
Automatic non-verbal communication skills analysis: a quantitative evaluation |
Type |
Journal Article |
|
Year |
2015 |
Publication |
AI Communications |
Abbreviated Journal  |
AIC |
|
|
Volume |
28 |
Issue |
1 |
Pages |
87-101 |
|
|
Keywords |
Social signal processing; human behavior analysis; multi-modal data description; multi-modal data fusion; non-verbal communication analysis; e-Learning |
|
|
Abstract |
The oral communication competence is defined on the top of the most relevant skills for one's professional and personal life. Because of the importance of communication in our activities of daily living, it is crucial to study methods to evaluate and provide the necessary feedback that can be used in order to improve these communication capabilities and, therefore, learn how to express ourselves better. In this work, we propose a system capable of evaluating quantitatively the quality of oral presentations in an automatic fashion. The system is based on a multi-modal RGB, depth, and audio data description and a fusion approach in order to recognize behavioral cues and train classifiers able to eventually predict communication quality levels. The performance of the proposed system is tested on a novel dataset containing Bachelor thesis' real defenses, presentations from an 8th semester Bachelor courses, and Master courses' presentations at Universitat de Barcelona. Using as groundtruth the marks assigned by actual instructors, our system achieves high performance categorizing and ranking presentations by their quality, and also making real-valued mark predictions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0921-7126 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ CCE2015 |
Serial |
2549 |
|
Permanent link to this record |
|
|
|
|
Author |
Raquel Justo; Leila Ben Letaifa; Cristina Palmero; Eduardo Gonzalez-Fraile; Anna Torp Johansen; Alain Vazquez; Gennaro Cordasco; Stephan Schlogl; Begoña Fernandez-Ruanova; Micaela Silva; Sergio Escalera; Mikel de Velasco; Joffre Tenorio-Laranga; Anna Esposito; Maria Korsnes; M. Ines Torres |

|
|
Title |
Analysis of the Interaction between Elderly People and a Simulated Virtual Coach, Journal of Ambient Intelligence and Humanized Computing |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Journal of Ambient Intelligence and Humanized Computing |
Abbreviated Journal  |
AIHC |
|
|
Volume |
11 |
Issue |
12 |
Pages |
6125-6140 |
|
|
Keywords |
|
|
|
Abstract |
The EMPATHIC project develops and validates new interaction paradigms for personalized virtual coaches (VC) to promote healthy and independent aging. To this end, the work presented in this paper is aimed to analyze the interaction between the EMPATHIC-VC and the users. One of the goals of the project is to ensure an end-user driven design, involving senior users from the beginning and during each phase of the project. Thus, the paper focuses on some sessions where the seniors carried out interactions with a Wizard of Oz driven, simulated system. A coaching strategy based on the GROW model was used throughout these sessions so as to guide interactions and engage the elderly with the goals of the project. In this interaction framework, both the human and the system behavior were analyzed. The way the wizard implements the GROW coaching strategy is a key aspect of the system behavior during the interaction. The language used by the virtual agent as well as his or her physical aspect are also important cues that were analyzed. Regarding the user behavior, the vocal communication provides information about the speaker’s emotional status, that is closely related to human behavior and which can be extracted from the speech and language analysis. In the same way, the analysis of the facial expression, gazes and gestures can provide information on the non verbal human communication even when the user is not talking. In addition, in order to engage senior users, their preferences and likes had to be considered. To this end, the effect of the VC on the users was gathered by means of direct questionnaires. These analyses have shown a positive and calm behavior of users when interacting with the simulated virtual coach as well as some difficulties of the system to develop the proposed coaching strategy. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ JLP2020 |
Serial |
3443 |
|
Permanent link to this record |