toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Escalera edit   pdf
url  openurl
  Title Multi-Modal Human Behaviour Analysis from Visual Data Sources Type Journal
  Year 2013 Publication ERCIM News journal Abbreviated Journal (up) ERCIM  
  Volume 95 Issue Pages 21-22  
  Keywords  
  Abstract The Human Pose Recovery and Behaviour Analysis group (HuPBA), University of Barcelona, is developing a line of research on multi-modal analysis of humans in visual data. The novel technology is being applied in several scenarios with high social impact, including sign language recognition, assisted technology and supported diagnosis for the elderly and people with mental/physical disabilities, fitness conditioning, and Human Computer Interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-4981 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ Esc2013 Serial 2361  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title Hand sign language recognition using multi-view hand skeleton Type Journal Article
  Year 2020 Publication Expert Systems With Applications Abbreviated Journal (up) ESWA  
  Volume 150 Issue Pages 113336  
  Keywords Multi-view hand skeleton; Hand sign language recognition; 3DCNN; Hand pose estimation; RGB video; Hand action recognition  
  Abstract Hand sign language recognition from video is a challenging research area in computer vision, which performance is affected by hand occlusion, fast hand movement, illumination changes, or background complexity, just to mention a few. In recent years, deep learning approaches have achieved state-of-the-art results in the field, though previous challenges are not completely solved. In this work, we propose a novel deep learning-based pipeline architecture for efficient automatic hand sign language recognition using Single Shot Detector (SSD), 2D Convolutional Neural Network (2DCNN), 3D Convolutional Neural Network (3DCNN), and Long Short-Term Memory (LSTM) from RGB input videos. We use a CNN-based model which estimates the 3D hand keypoints from 2D input frames. After that, we connect these estimated keypoints to build the hand skeleton by using midpoint algorithm. In order to obtain a more discriminative representation of hands, we project 3D hand skeleton into three views surface images. We further employ the heatmap image of detected keypoints as input for refinement in a stacked fashion. We apply 3DCNNs on the stacked features of hand, including pixel level, multi-view hand skeleton, and heatmap features, to extract discriminant local spatio-temporal features from these stacked inputs. The outputs of the 3DCNNs are fused and fed to a LSTM to model long-term dynamics of hand sign gestures. Analyzing 2DCNN vs. 3DCNN using different number of stacked inputs into the network, we demonstrate that 3DCNN better capture spatio-temporal dynamics of hands. To the best of our knowledge, this is the first time that this multi-modal and multi-view set of hand skeleton features are applied for hand sign language recognition. Furthermore, we present a new large-scale hand sign language dataset, namely RKS-PERSIANSIGN, including 10′000 RGB videos of 100 Persian sign words. Evaluation results of the proposed model on three datasets, NYU, First-Person, and RKS-PERSIANSIGN, indicate that our model outperforms state-of-the-art models in hand sign language recognition, hand pose estimation, and hand action recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ RKE2020a Serial 3411  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title Sign Language Recognition: A Deep Survey Type Journal Article
  Year 2021 Publication Expert Systems With Applications Abbreviated Journal (up) ESWA  
  Volume 164 Issue Pages 113794  
  Keywords  
  Abstract Sign language, as a different form of the communication language, is important to large groups of people in society. There are different signs in each sign language with variability in hand shape, motion profile, and position of the hand, face, and body parts contributing to each sign. So, visual sign language recognition is a complex research area in computer vision. Many models have been proposed by different researchers with significant improvement by deep learning approaches in recent years. In this survey, we review the vision-based proposed models of sign language recognition using deep learning approaches from the last five years. While the overall trend of the proposed models indicates a significant improvement in recognition accuracy in sign language recognition, there are some challenges yet that need to be solved. We present a taxonomy to categorize the proposed models for isolated and continuous sign language recognition, discussing applications, datasets, hybrid models, complexity, and future lines of research in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ RKE2021a Serial 3521  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva; Jordi Vitria; Maria Teresa Anguera edit  doi
openurl 
  Title Automatic Detection of Dominance and Expected Interest Type Journal Article
  Year 2010 Publication EURASIP Journal on Advances in Signal Processing Abbreviated Journal (up) EURASIPJ  
  Volume Issue Pages 12  
  Keywords  
  Abstract Article ID 491819
Social Signal Processing is an emergent area of research that focuses on the analysis of social constructs. Dominance and interest are two of these social constructs. Dominance refers to the level of influence a person has in a conversation. Interest, when referred in terms of group interactions, can be defined as the degree of engagement that the members of a group collectively display during their interaction. In this paper, we argue that only using behavioral motion information, we are able to predict the interest of observers when looking at face-to-face interactions as well as the dominant people. First, we propose a simple set of movement-based features from body, face, and mouth activity in order to define a higher set of interaction indicators. The considered indicators are manually annotated by observers. Based on the opinions obtained, we define an automatic binary dominance detection problem and a multiclass interest quantification problem. Error-Correcting Output Codes framework is used to learn to rank the perceived observer's interest in face-to-face interactions meanwhile Adaboost is used to solve the dominant detection problem. The automatic system shows good correlation between the automatic categorization results and the manual ranking made by the observers in both dominance and interest detection problems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1110-8657 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;HUPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010d Serial 1283  
Permanent link to this record
 

 
Author Zahra Raisi-Estabragh; Carlos Martin-Isla; Louise Nissen; Liliana Szabo; Victor M. Campello; Sergio Escalera; Simon Winther; Morten Bottcher; Karim Lekadir; and Steffen E. Petersen edit  url
openurl 
  Title Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset Type Journal Article
  Year 2023 Publication Frontiers in Cardiovascular Medicine Abbreviated Journal (up) FCM  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ RMN2023 Serial 3937  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: