|
Records |
Links |
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |

|
|
Title |
Sign Language Recognition: A Deep Survey |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Expert Systems With Applications |
Abbreviated Journal  |
ESWA |
|
|
Volume |
164 |
Issue |
|
Pages |
113794 |
|
|
Keywords |
|
|
|
Abstract |
Sign language, as a different form of the communication language, is important to large groups of people in society. There are different signs in each sign language with variability in hand shape, motion profile, and position of the hand, face, and body parts contributing to each sign. So, visual sign language recognition is a complex research area in computer vision. Many models have been proposed by different researchers with significant improvement by deep learning approaches in recent years. In this survey, we review the vision-based proposed models of sign language recognition using deep learning approaches from the last five years. While the overall trend of the proposed models indicates a significant improvement in recognition accuracy in sign language recognition, there are some challenges yet that need to be solved. We present a taxonomy to categorize the proposed models for isolated and continuous sign language recognition, discussing applications, datasets, hybrid models, complexity, and future lines of research in the field. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2021a |
Serial |
3521 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva; Jordi Vitria; Maria Teresa Anguera |

|
|
Title |
Automatic Detection of Dominance and Expected Interest |
Type |
Journal Article |
|
Year |
2010 |
Publication |
EURASIP Journal on Advances in Signal Processing |
Abbreviated Journal  |
EURASIPJ |
|
|
Volume |
|
Issue |
|
Pages |
12 |
|
|
Keywords |
|
|
|
Abstract |
Article ID 491819
Social Signal Processing is an emergent area of research that focuses on the analysis of social constructs. Dominance and interest are two of these social constructs. Dominance refers to the level of influence a person has in a conversation. Interest, when referred in terms of group interactions, can be defined as the degree of engagement that the members of a group collectively display during their interaction. In this paper, we argue that only using behavioral motion information, we are able to predict the interest of observers when looking at face-to-face interactions as well as the dominant people. First, we propose a simple set of movement-based features from body, face, and mouth activity in order to define a higher set of interaction indicators. The considered indicators are manually annotated by observers. Based on the opinions obtained, we define an automatic binary dominance detection problem and a multiclass interest quantification problem. Error-Correcting Output Codes framework is used to learn to rank the perceived observer's interest in face-to-face interactions meanwhile Adaboost is used to solve the dominant detection problem. The automatic system shows good correlation between the automatic categorization results and the manual ranking made by the observers in both dominance and interest detection problems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1110-8657 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
OR;MILAB;HUPBA;MV |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2010d |
Serial |
1283 |
|
Permanent link to this record |
|
|
|
|
Author |
Frederic Sampedro; Sergio Escalera |


|
|
Title |
Spatial codification of label predictions in Multi-scale Stacked Sequential Learning: A case study on multi-class medical volume segmentation |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IET Computer Vision |
Abbreviated Journal  |
IETCV |
|
|
Volume |
9 |
Issue |
3 |
Pages |
439 - 446 |
|
|
Keywords |
|
|
|
Abstract |
In this study, the authors propose the spatial codification of label predictions within the multi-scale stacked sequential learning (MSSL) framework, a successful learning scheme to deal with non-independent identically distributed data entries. After providing a motivation for this objective, they describe its theoretical framework based on the introduction of the blurred shape model as a smart descriptor to codify the spatial distribution of the predicted labels and define the new extended feature set for the second stacked classifier. They then particularise this scheme to be applied in volume segmentation applications. Finally, they test the implementation of the proposed framework in two medical volume segmentation datasets, obtaining significant performance improvements (with a 95% of confidence) in comparison to standard Adaboost classifier and classical MSSL approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1751-9632 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SaE2015 |
Serial |
2551 |
|
Permanent link to this record |
|
|
|
|
Author |
Huamin Ren; Nattiya Kanhabua; Andreas Mogelmose; Weifeng Liu; Kaustubh Kulkarni; Sergio Escalera; Xavier Baro; Thomas B. Moeslund |


|
|
Title |
Back-dropout Transfer Learning for Action Recognition |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IET Computer Vision |
Abbreviated Journal  |
IETCV |
|
|
Volume |
12 |
Issue |
4 |
Pages |
484-491 |
|
|
Keywords |
Learning (artificial intelligence); Pattern Recognition |
|
|
Abstract |
Transfer learning aims at adapting a model learned from source dataset to target dataset. It is a beneficial approach especially when annotating on the target dataset is expensive or infeasible. Transfer learning has demonstrated its powerful learning capabilities in various vision tasks. Despite transfer learning being a promising approach, it is still an open question how to adapt the model learned from the source dataset to the target dataset. One big challenge is to prevent the impact of category bias on classification performance. Dataset bias exists when two images from the same category, but from different datasets, are not classified as the same. To address this problem, a transfer learning algorithm has been proposed, called negative back-dropout transfer learning (NB-TL), which utilizes images that have been misclassified and further performs back-dropout strategy on them to penalize errors. Experimental results demonstrate the effectiveness of the proposed algorithm. In particular, the authors evaluate the performance of the proposed NB-TL algorithm on UCF 101 action recognition dataset, achieving 88.9% recognition rate. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKM2018 |
Serial |
3071 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ilyes Lakhal; Hakan Çevikalp; Sergio Escalera; Ferda Ofli |

|
|
Title |
Recurrent Neural Networks for Remote Sensing Image Classification |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IET Computer Vision |
Abbreviated Journal  |
IETCV |
|
|
Volume |
12 |
Issue |
7 |
Pages |
1040 - 1045 |
|
|
Keywords |
|
|
|
Abstract |
Automatically classifying an image has been a central problem in computer vision for decades. A plethora of models has been proposed, from handcrafted feature solutions to more sophisticated approaches such as deep learning. The authors address the problem of remote sensing image classification, which is an important problem to many real world applications. They introduce a novel deep recurrent architecture that incorporates high-level feature descriptors to tackle this challenging problem. Their solution is based on the general encoder–decoder framework. To the best of the authors’ knowledge, this is the first study to use a recurrent network structure on this task. The experimental results show that the proposed framework outperforms the previous works in the three datasets widely used in the literature. They have achieved a state-of-the-art accuracy rate of 97.29% on the UC Merced dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ LÇE2018 |
Serial |
3119 |
|
Permanent link to this record |