toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Ikechukwu Ofodile; Ahmed Helmi; Albert Clapes; Egils Avots; Kerttu Maria Peensoo; Sandhra Mirella Valdma; Andreas Valdmann; Heli Valtna Lukner; Sergey Omelkov; Sergio Escalera; Cagri Ozcinar; Gholamreza Anbarjafari edit  url
doi  openurl
  Title Action recognition using single-pixel time-of-flight detection Type Journal Article
  Year 2019 Publication Entropy Abbreviated Journal (up) ENTROPY  
  Volume 21 Issue 4 Pages 414  
  Keywords single pixel single photon image acquisition; time-of-flight; action recognition  
  Abstract Action recognition is a challenging task that plays an important role in many robotic systems, which highly depend on visual input feeds. However, due to privacy concerns, it is important to find a method which can recognise actions without using visual feed. In this paper, we propose a concept for detecting actions while preserving the test subject’s privacy. Our proposed method relies only on recording the temporal evolution of light pulses scattered back from the scene.
Such data trace to record one action contains a sequence of one-dimensional arrays of voltage values acquired by a single-pixel detector at 1 GHz repetition rate. Information about both the distance to the object and its shape are embedded in the traces. We apply machine learning in the form of recurrent neural networks for data analysis and demonstrate successful action recognition. The experimental results show that our proposed method could achieve on average 96.47% accuracy on the actions walking forward, walking backwards, sitting down, standing up and waving hand, using recurrent
neural network.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ OHC2019 Serial 3319  
Permanent link to this record
 

 
Author Thomas B. Moeslund; Sergio Escalera; Gholamreza Anbarjafari; Kamal Nasrollahi; Jun Wan edit  url
openurl 
  Title Statistical Machine Learning for Human Behaviour Analysis Type Journal Article
  Year 2020 Publication Entropy Abbreviated Journal (up) ENTROPY  
  Volume 25 Issue 5 Pages 530  
  Keywords action recognition; emotion recognition; privacy-aware  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ MEA2020 Serial 3441  
Permanent link to this record
 

 
Author Sergio Escalera; R. M. Martinez; Jordi Vitria; Petia Radeva; Maria Teresa Anguera edit   pdf
openurl 
  Title Deteccion automatica de la dominancia en conversaciones diadicas Type Journal Article
  Year 2010 Publication Escritos de Psicologia Abbreviated Journal (up) EP  
  Volume 3 Issue 2 Pages 41–45  
  Keywords Dominance detection; Non-verbal communication; Visual features  
  Abstract Dominance is referred to the level of influence that a person has in a conversation. Dominance is an important research area in social psychology, but the problem of its automatic estimation is a very recent topic in the contexts of social and wearable computing. In this paper, we focus on the dominance detection of visual cues. We estimate the correlation among observers by categorizing the dominant people in a set of face-to-face conversations. Different dominance indicators from gestural communication are defined, manually annotated, and compared to the observers' opinion. Moreover, these indicators are automatically extracted from video sequences and learnt by using binary classifiers. Results from the three analyses showed a high correlation and allows the categorization of dominant people in public discussion video sequences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1989-3809 ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; OR; MILAB;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ EMV2010 Serial 1315  
Permanent link to this record
 

 
Author Sergio Escalera edit   pdf
url  openurl
  Title Multi-Modal Human Behaviour Analysis from Visual Data Sources Type Journal
  Year 2013 Publication ERCIM News journal Abbreviated Journal (up) ERCIM  
  Volume 95 Issue Pages 21-22  
  Keywords  
  Abstract The Human Pose Recovery and Behaviour Analysis group (HuPBA), University of Barcelona, is developing a line of research on multi-modal analysis of humans in visual data. The novel technology is being applied in several scenarios with high social impact, including sign language recognition, assisted technology and supported diagnosis for the elderly and people with mental/physical disabilities, fitness conditioning, and Human Computer Interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-4981 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ Esc2013 Serial 2361  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title Hand sign language recognition using multi-view hand skeleton Type Journal Article
  Year 2020 Publication Expert Systems With Applications Abbreviated Journal (up) ESWA  
  Volume 150 Issue Pages 113336  
  Keywords Multi-view hand skeleton; Hand sign language recognition; 3DCNN; Hand pose estimation; RGB video; Hand action recognition  
  Abstract Hand sign language recognition from video is a challenging research area in computer vision, which performance is affected by hand occlusion, fast hand movement, illumination changes, or background complexity, just to mention a few. In recent years, deep learning approaches have achieved state-of-the-art results in the field, though previous challenges are not completely solved. In this work, we propose a novel deep learning-based pipeline architecture for efficient automatic hand sign language recognition using Single Shot Detector (SSD), 2D Convolutional Neural Network (2DCNN), 3D Convolutional Neural Network (3DCNN), and Long Short-Term Memory (LSTM) from RGB input videos. We use a CNN-based model which estimates the 3D hand keypoints from 2D input frames. After that, we connect these estimated keypoints to build the hand skeleton by using midpoint algorithm. In order to obtain a more discriminative representation of hands, we project 3D hand skeleton into three views surface images. We further employ the heatmap image of detected keypoints as input for refinement in a stacked fashion. We apply 3DCNNs on the stacked features of hand, including pixel level, multi-view hand skeleton, and heatmap features, to extract discriminant local spatio-temporal features from these stacked inputs. The outputs of the 3DCNNs are fused and fed to a LSTM to model long-term dynamics of hand sign gestures. Analyzing 2DCNN vs. 3DCNN using different number of stacked inputs into the network, we demonstrate that 3DCNN better capture spatio-temporal dynamics of hands. To the best of our knowledge, this is the first time that this multi-modal and multi-view set of hand skeleton features are applied for hand sign language recognition. Furthermore, we present a new large-scale hand sign language dataset, namely RKS-PERSIANSIGN, including 10′000 RGB videos of 100 Persian sign words. Evaluation results of the proposed model on three datasets, NYU, First-Person, and RKS-PERSIANSIGN, indicate that our model outperforms state-of-the-art models in hand sign language recognition, hand pose estimation, and hand action recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ RKE2020a Serial 3411  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: