|
Records |
Links |
|
Author |
Reuben Dorent; Aaron Kujawa; Marina Ivory; Spyridon Bakas; Nikola Rieke; Samuel Joutard; Ben Glocker; Jorge Cardoso; Marc Modat; Kayhan Batmanghelich; Arseniy Belkov; Maria Baldeon Calisto; Jae Won Choi; Benoit M. Dawant; Hexin Dong; Sergio Escalera; Yubo Fan; Lasse Hansen; Mattias P. Heinrich; Smriti Joshi; Victoriya Kashtanova; Hyeon Gyu Kim; Satoshi Kondo; Christian N. Kruse; Susana K. Lai-Yuen; Hao Li; Han Liu; Buntheng Ly; Ipek Oguz; Hyungseob Shin; Boris Shirokikh; Zixian Su; Guotai Wang; Jianghao Wu; Yanwu Xu; Kai Yao; Li Zhang; Sebastien Ourselin, |
|
|
Title |
CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Medical Image Analysis |
Abbreviated Journal |
MIA |
|
|
Volume |
83 |
Issue |
|
Pages |
102628 |
|
|
Keywords |
Domain Adaptation; Segmen tation; Vestibular Schwnannoma |
|
|
Abstract |
Domain Adaptation (DA) has recently raised strong interests in the medical imaging community. While a large variety of DA techniques has been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA. The challenge's goal is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are performed using contrast-enhanced T1 (ceT1) MRI. However, there is growing interest in using non-contrast sequences such as high-resolution T2 (hrT2) MRI. Therefore, we created an unsupervised cross-modality segmentation benchmark. The training set provides annotated ceT1 (N=105) and unpaired non-annotated hrT2 (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137). A total of 16 teams submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice – VS:88.4%; Cochleas:85.7%) and close to full supervision (median Dice – VS:92.5%; Cochleas:87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ DKI2023 |
Serial |
3706 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Li; Fuping Wu; Sihan Wang; Xinzhe Luo; Carlos Martin-Isla; Shuwei Zhai; Jianpeng Zhang; Yanfei Liu; Zhen Zhang; Markus J. Ankenbrand; Haochuan Jiang; Xiaoran Zhang; Linhong Wang; Tewodros Weldebirhan Arega; Elif Altunok; Zhou Zhao; Feiyan Li; Jun Ma; Xiaoping Yang; Elodie Puybareau; Ilkay Oksuz; Stephanie Bricq; Weisheng Li;Kumaradevan Punithakumar; Sotirios A. Tsaftaris; Laura M. Schreiber; Mingjing Yang; Guocai Liu; Yong Xia; Guotai Wang; Sergio Escalera; Xiahai Zhuag |
|
|
Title |
MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Medical Image Analysis |
Abbreviated Journal |
MIA |
|
|
Volume |
87 |
Issue |
|
Pages |
102808 |
|
|
Keywords |
|
|
|
Abstract |
Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on the myocardium is the key to this assessment. This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS) combining three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. Note that MyoPS refers to both myocardial pathology segmentation and the challenge in this paper. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation. In this article, we provide details of the challenge, survey the works from fifteen participants and interpret their methods according to five aspects, i.e., preprocessing, data augmentation, learning strategy, model architecture and post-processing. In addition, we analyze the results with respect to different factors, in order to examine the key obstacles and explore the potential of solutions, as well as to provide a benchmark for future research. The average Dice scores of submitted algorithms were and for myocardial scars and edema, respectively. We conclude that while promising results have been reported, the research is still in the early stage, and more in-depth exploration is needed before a successful application to the clinics. MyoPS data and evaluation tool continue to be publicly available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ LWW2023a |
Serial |
3878 |
|
Permanent link to this record |
|
|
|
|
Author |
Pejman Rasti; Salma Samiei; Mary Agoyi; Sergio Escalera; Gholamreza Anbarjafari |
|
|
Title |
Robust non-blind color video watermarking using QR decomposition and entropy analysis |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Visual Communication and Image Representation |
Abbreviated Journal |
JVCIR |
|
|
Volume |
38 |
Issue |
|
Pages |
838-847 |
|
|
Keywords |
Video watermarking; QR decomposition; Discrete Wavelet Transformation; Chirp Z-transform; Singular value decomposition; Orthogonal–triangular decomposition |
|
|
Abstract |
Issues such as content identification, document and image security, audience measurement, ownership and copyright among others can be settled by the use of digital watermarking. Many recent video watermarking methods show drops in visual quality of the sequences. The present work addresses the aforementioned issue by introducing a robust and imperceptible non-blind color video frame watermarking algorithm. The method divides frames into moving and non-moving parts. The non-moving part of each color channel is processed separately using a block-based watermarking scheme. Blocks with an entropy lower than the average entropy of all blocks are subject to a further process for embedding the watermark image. Finally a watermarked frame is generated by adding moving parts to it. Several signal processing attacks are applied to each watermarked frame in order to perform experiments and are compared with some recent algorithms. Experimental results show that the proposed scheme is imperceptible and robust against common signal processing attacks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @RSA2016 |
Serial |
2766 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Carrillo; E Fernandez-Nofrerias; Francesco Ciompi; Oriol Rodriguez-Leor; Petia Radeva; Neus Salvatella; Oriol Pujol; J. Mauri; A. Bayes |
|
|
Title |
Changes in Radial Artery Volume Assessed Using Intravascular Ultrasound: A Comparison of Two Vasodilator Regimens in Transradial Coronary Intervention |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Journal of Invasive Cardiology |
Abbreviated Journal |
JOIC |
|
|
Volume |
23 |
Issue |
10 |
Pages |
401-404 |
|
|
Keywords |
radial; vasodilator treatment; percutaneous coronary intervention; IVUS; volumetric IVUS analysis |
|
|
Abstract |
OBJECTIVES:
This study used intravascular ultrasound (IVUS) to evaluate radial artery volume changes after intraarterial administration of nitroglycerin and/or verapamil.
BACKGROUND:
Radial artery spasm, which is associated with radial artery size, is the main limitation of the transradial approach in percutaneous coronary interventions (PCI).
METHODS:
This prospective, randomized study compared the effect of two intra-arterial vasodilator regimens on radial artery volume: 0.2 mg of nitroglycerin plus 2.5 mg of verapamil (Group 1; n = 15) versus 2.5 mg of verapamil alone (Group 2; n = 15). Radial artery lumen volume was assessed using IVUS at two time points: at baseline (5 minutes after sheath insertion) and post-vasodilator (1 minute after drug administration). The luminal volume of the radial artery was computed using ECOC Random Fields (ECOC-RF), a technique used for automatic segmentation of luminal borders in longitudinal cut images from IVUS sequences.
RESULTS:
There was a significant increase in arterial lumen volume in both groups, with an increase from 451 ± 177 mm³ to 508 ± 192 mm³ (p = 0.001) in Group 1 and from 456 ± 188 mm³ to 509 ± 170 mm³ (p = 0.001) in Group 2. There were no significant differences between the groups in terms of absolute volume increase (58 mm³ versus 53 mm³, respectively; p = 0.65) or in relative volume increase (14% versus 20%, respectively; p = 0.69).
CONCLUSIONS:
Administration of nitroglycerin plus verapamil or verapamil alone to the radial artery resulted in similar increases in arterial lumen volume according to ECOC-RF IVUS measurements. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ CFC2011 |
Serial |
1797 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva |
|
|
Title |
Error-Correcting Output Codes Library |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Journal of Machine Learning Research |
Abbreviated Journal |
JMLR |
|
|
Volume |
11 |
Issue |
|
Pages |
661-664 |
|
|
Keywords |
|
|
|
Abstract |
(Feb):661−664
In this paper, we present an open source Error-Correcting Output Codes (ECOC) library. The ECOC framework is a powerful tool to deal with multi-class categorization problems. This library contains both state-of-the-art coding (one-versus-one, one-versus-all, dense random, sparse random, DECOC, forest-ECOC, and ECOC-ONE) and decoding designs (hamming, euclidean, inverse hamming, laplacian, β-density, attenuated, loss-based, probabilistic kernel-based, and loss-weighted) with the parameters defined by the authors, as well as the option to include your own coding, decoding, and base classifier. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1532-4435 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HUPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2010c |
Serial |
1286 |
|
Permanent link to this record |