toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alloy Das; Sanket Biswas; Ayan Banerjee; Josep Llados; Umapada Pal; Saumik Bhattacharya edit   pdf
url  openurl
  Title Harnessing the Power of Multi-Lingual Datasets for Pre-training: Towards Enhancing Text Spotting Performance Type Conference Article
  Year (down) 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 718-728  
  Keywords  
  Abstract The adaptation capability to a wide range of domains is crucial for scene text spotting models when deployed to real-world conditions. However, existing state-of-the-art (SOTA) approaches usually incorporate scene text detection and recognition simply by pretraining on natural scene text datasets, which do not directly exploit the intermediate feature representations between multiple domains. Here, we investigate the problem of domain-adaptive scene text spotting, i.e., training a model on multi-domain source data such that it can directly adapt to target domains rather than being specialized for a specific domain or scenario. Further, we investigate a transformer baseline called Swin-TESTR to focus on solving scene-text spotting for both regular and arbitrary-shaped scene text along with an exhaustive evaluation. The results clearly demonstrate the potential of intermediate representations to achieve significant performance on text spotting benchmarks across multiple domains (e.g. language, synth-to-real, and documents). both in terms of accuracy and efficiency.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ DBB2024 Serial 3986  
Permanent link to this record
 

 
Author Alloy Das; Sanket Biswas; Umapada Pal; Josep Llados edit   pdf
url  openurl
  Title Diving into the Depths of Spotting Text in Multi-Domain Noisy Scenes Type Conference Article
  Year (down) 2024 Publication IEEE International Conference on Robotics and Automation in PACIFICO Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and fine-tuning strategies on natural scene datasets, which do not exploit the feature interaction across other complex domains. In this work, we explore and investigate the problem of domain-agnostic scene text spotting, i.e., training a model on multi-domain source data such that it can directly generalize to target domains rather than being specialized for a specific domain or scenario. In this regard, we present the community a text spotting validation benchmark called Under-Water Text (UWT) for noisy underwater scenes to establish an important case study. Moreover, we also design an efficient super-resolution based end-to-end transformer baseline called DA-TextSpotter which achieves comparable or superior performance over existing text spotting architectures for both regular and arbitrary-shaped scene text spotting benchmarks in terms of both accuracy and model efficiency. The dataset, code and pre-trained models will be released upon acceptance.  
  Address Yokohama; Japan; May 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICRA  
  Notes DAG Approved no  
  Call Number Admin @ si @ DBP2024 Serial 3979  
Permanent link to this record
 

 
Author Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal edit   pdf
url  openurl
  Title GraphKD: Exploring Knowledge Distillation Towards Document Object Detection with Structured Graph Creation Type Miscellaneous
  Year (down) 2024 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Object detection in documents is a key step to automate the structural elements identification process in a digital or scanned document through understanding the hierarchical structure and relationships between different elements. Large and complex models, while achieving high accuracy, can be computationally expensive and memory-intensive, making them impractical for deployment on resource constrained devices. Knowledge distillation allows us to create small and more efficient models that retain much of the performance of their larger counterparts. Here we present a graph-based knowledge distillation framework to correctly identify and localize the document objects in a document image. Here, we design a structured graph with nodes containing proposal-level features and edges representing the relationship between the different proposal regions. Also, to reduce text bias an adaptive node sampling strategy is designed to prune the weight distribution and put more weightage on non-text nodes. We encode the complete graph as a knowledge representation and transfer it from the teacher to the student through the proposed distillation loss by effectively capturing both local and global information concurrently. Extensive experimentation on competitive benchmarks demonstrates that the proposed framework outperforms the current state-of-the-art approaches. The code will be available at: this https URL.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ BBL2024b Serial 4023  
Permanent link to this record
 

 
Author Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal edit  url
doi  openurl
  Title SemiDocSeg: Harnessing Semi-Supervised Learning for Document Layout Analysis Type Journal Article
  Year (down) 2024 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume Issue Pages  
  Keywords Document layout analysis; Semi-supervised learning; Co-Occurrence matrix; Instance segmentation; Swin transformer  
  Abstract Document Layout Analysis (DLA) is the process of automatically identifying and categorizing the structural components (e.g. Text, Figure, Table, etc.) within a document to extract meaningful content and establish the page's layout structure. It is a crucial stage in document parsing, contributing to their comprehension. However, traditional DLA approaches often demand a significant volume of labeled training data, and the labor-intensive task of generating high-quality annotated training data poses a substantial challenge. In order to address this challenge, we proposed a semi-supervised setting that aims to perform learning on limited annotated categories by eliminating exhaustive and expensive mask annotations. The proposed setting is expected to be generalizable to novel categories as it learns the underlying positional information through a support set and class information through Co-Occurrence that can be generalized from annotated categories to novel categories. Here, we first extract features from the input image and support set with a shared multi-scale feature acquisition backbone. Then, the extracted feature representation is fed to the transformer encoder as a query. Later on, we utilize a semantic embedding network before the decoder to capture the underlying semantic relationships and similarities between different instances, enabling the model to make accurate predictions or classifications with only a limited amount of labeled data. Extensive experimentation on competitive benchmarks like PRIMA, DocLayNet, and Historical Japanese (HJ) demonstrate that this generalized setup obtains significant performance compared to the conventional supervised approach.  
  Address June 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ BBL2024a Serial 4001  
Permanent link to this record
 

 
Author Beata Megyesi; Alicia Fornes; Nils Kopal; Benedek Lang edit  url
openurl 
  Title Historical Cryptology Type Book Chapter
  Year (down) 2024 Publication Learning and Experiencing Cryptography with CrypTool and SageMath Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Historical cryptology studies (original) encrypted manuscripts, often handwritten sources, produced in our history. These historical sources can be found in archives, often hidden without any indexing and therefore hard to locate. Once found they need to be digitized and turned into a machine-readable text format before they can be deciphered with computational methods. The focus of historical cryptology is not primarily the development of sophisticated algorithms for decipherment, but rather the entire process of analysis of the encrypted source from collection and digitization to transcription and decryption. The process also includes the interpretation and contextualization of the message set in its historical context. There are many challenges on the way, such as mistakes made by the scribe, errors made by the transcriber, damaged pages, handwriting styles that are difficult to interpret, historical languages from various time periods, and hidden underlying language of the message. Ciphertexts vary greatly in terms of their code system and symbol sets used with more or less distinguishable symbols. Ciphertexts can be embedded in clearly written text, or shorter or longer sequences of cleartext can be embedded in the ciphertext. The ciphers used mostly in historical times are substitutions (simple, homophonic, or polyphonic), with or without nomenclatures, encoded as digits or symbol sequences, with or without spaces. So the circumstances are different from those in modern cryptography which focuses on methods (algorithms) and their strengths and assumes that the algorithm is applied correctly. For both historical and modern cryptology, attack vectors outside the algorithm are applied like implementation flaws and side-channel attacks. In this chapter, we give an introduction to the field of historical cryptology and present an overview of how researchers today process historical encrypted sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ MFK2024 Serial 4020  
Permanent link to this record
 

 
Author Sergi Garcia Bordils; Dimosthenis Karatzas; Marçal Rusiñol edit   pdf
url  openurl
  Title STEP – Towards Structured Scene-Text Spotting Type Conference Article
  Year (down) 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 883-892  
  Keywords  
  Abstract We introduce the structured scene-text spotting task, which requires a scene-text OCR system to spot text in the wild according to a query regular expression. Contrary to generic scene text OCR, structured scene-text spotting seeks to dynamically condition both scene text detection and recognition on user-provided regular expressions. To tackle this task, we propose the Structured TExt sPotter (STEP), a model that exploits the provided text structure to guide the OCR process. STEP is able to deal with regular expressions that contain spaces and it is not bound to detection at the word-level granularity. Our approach enables accurate zero-shot structured text spotting in a wide variety of real-world reading scenarios and is solely trained on publicly available data. To demonstrate the effectiveness of our approach, we introduce a new challenging test dataset that contains several types of out-of-vocabulary structured text, reflecting important reading applications of fields such as prices, dates, serial numbers, license plates etc. We demonstrate that STEP can provide specialised OCR performance on demand in all tested scenarios.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ GKR2024 Serial 3992  
Permanent link to this record
 

 
Author Adarsh Tiwari; Sanket Biswas; Josep Llados edit  url
openurl 
  Title Can Pre-trained Language Models Help in Understanding Handwritten Symbols? Type Conference Article
  Year (down) 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14193 Issue Pages 199–211  
  Keywords  
  Abstract The emergence of transformer models like BERT, GPT-2, GPT-3, RoBERTa, T5 for natural language understanding tasks has opened the floodgates towards solving a wide array of machine learning tasks in other modalities like images, audio, music, sketches and so on. These language models are domain-agnostic and as a result could be applied to 1-D sequences of any kind. However, the key challenge lies in bridging the modality gap so that they could generate strong features beneficial for out-of-domain tasks. This work focuses on leveraging the power of such pre-trained language models and discusses the challenges in predicting challenging handwritten symbols and alphabets.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TBL2023 Serial 3908  
Permanent link to this record
 

 
Author Asma Bensalah; Antonio Parziale; Giuseppe De Gregorio; Angelo Marcelli; Alicia Fornes; Josep Llados edit  url
doi  openurl
  Title I Can’t Believe It’s Not Better: In-air Movement for Alzheimer Handwriting Synthetic Generation Type Conference Article
  Year (down) 2023 Publication 21st International Graphonomics Conference Abbreviated Journal  
  Volume Issue Pages 136–148  
  Keywords  
  Abstract During recent years, there here has been a boom in terms of deep learning use for handwriting analysis and recognition. One main application for handwriting analysis is early detection and diagnosis in the health field. Unfortunately, most real case problems still suffer a scarcity of data, which makes difficult the use of deep learning-based models. To alleviate this problem, some works resort to synthetic data generation. Lately, more works are directed towards guided data synthetic generation, a generation that uses the domain and data knowledge to generate realistic data that can be useful to train deep learning models. In this work, we combine the domain knowledge about the Alzheimer’s disease for handwriting and use it for a more guided data generation. Concretely, we have explored the use of in-air movements for synthetic data generation.  
  Address Evora; Portugal; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG Approved no  
  Call Number Admin @ si @ BPG2023 Serial 3838  
Permanent link to this record
 

 
Author Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal edit  url
openurl 
  Title SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation Type Conference Article
  Year (down) 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14187 Issue Pages 307–325  
  Keywords  
  Abstract Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of 93.72, 54.39, 84.65 and 98.04 respectively under one billion parameters. The code is made publicly available at: github.com/ayanban011/SwinDocSegmenter .  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ BBL2023 Serial 3893  
Permanent link to this record
 

 
Author Francesc Net; Marc Folia; Pep Casals; Lluis Gomez edit  url
openurl 
  Title Transductive Learning for Near-Duplicate Image Detection in Scanned Photo Collections Type Conference Article
  Year (down) 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14191 Issue Pages 3-17  
  Keywords Image deduplication; Near-duplicate images detection; Transductive Learning; Photographic Archives; Deep Learning  
  Abstract This paper presents a comparative study of near-duplicate image detection techniques in a real-world use case scenario, where a document management company is commissioned to manually annotate a collection of scanned photographs. Detecting duplicate and near-duplicate photographs can reduce the time spent on manual annotation by archivists. This real use case differs from laboratory settings as the deployment dataset is available in advance, allowing the use of transductive learning. We propose a transductive learning approach that leverages state-of-the-art deep learning architectures such as convolutional neural networks (CNNs) and Vision Transformers (ViTs). Our approach involves pre-training a deep neural network on a large dataset and then fine-tuning the network on the unlabeled target collection with self-supervised learning. The results show that the proposed approach outperforms the baseline methods in the task of near-duplicate image detection in the UKBench and an in-house private dataset.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ NFC2023 Serial 3859  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: