|
Records |
Links |
|
Author |
Raul Gomez; Jaume Gibert; Lluis Gomez; Dimosthenis Karatzas |

|
|
Title |
Location Sensitive Image Retrieval and Tagging |
Type |
Conference Article |
|
Year |
2020 |
Publication |
16th European Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
People from different parts of the globe describe objects and concepts in distinct manners. Visual appearance can thus vary across different geographic locations, which makes location a relevant contextual information when analysing visual data. In this work, we address the task of image retrieval related to a given tag conditioned on a certain location on Earth. We present LocSens, a model that learns to rank triplets of images, tags and coordinates by plausibility, and two training strategies to balance the location influence in the final ranking. LocSens learns to fuse textual and location information of multimodal queries to retrieve related images at different levels of location granularity, and successfully utilizes location information to improve image tagging. |
|
|
Address |
Virtual; August 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCV |
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGG2020b |
Serial |
3420 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas |

|
|
Title |
Distilling Content from Style for Handwritten Word Recognition |
Type |
Conference Article |
|
Year |
2020 |
Publication |
17th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Despite the latest transcription accuracies reached using deep neural network architectures, handwritten text recognition still remains a challenging problem, mainly because of the large inter-writer style variability. Both augmenting the training set with artificial samples using synthetic fonts, and writer adaptation techniques have been proposed to yield more generic approaches aimed at dodging style unevenness. In this work, we take a step closer to learn style independent features from handwritten word images. We propose a novel method that is able to disentangle the content and style aspects of input images by jointly optimizing a generative process and a handwritten
word recognizer. The generator is aimed at transferring writing style features from one sample to another in an image-to-image translation approach, thus leading to a learned content-centric features that shall be independent to writing style attributes.
Our proposed recognition model is able then to leverage such writer-agnostic features to reach better recognition performances. We advance over prior training strategies and demonstrate with qualitative and quantitative evaluations the performance of both
the generative process and the recognition efficiency in the IAM dataset. |
|
|
Address |
Virtual ICFHR; September 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG; 600.129; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRR2020 |
Serial |
3425 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Pau Riba; Yaxing Wang; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas |

|
|
Title |
GANwriting: Content-Conditioned Generation of Styled Handwritten Word Images |
Type |
Conference Article |
|
Year |
2020 |
Publication |
16th European Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Although current image generation methods have reached impressive quality levels, they are still unable to produce plausible yet diverse images of handwritten words. On the contrary, when writing by hand, a great variability is observed across different writers, and even when analyzing words scribbled by the same individual, involuntary variations are conspicuous. In this work, we take a step closer to producing realistic and varied artificially rendered handwritten words. We propose a novel method that is able to produce credible handwritten word images by conditioning the generative process with both calligraphic style features and textual content. Our generator is guided by three complementary learning objectives: to produce realistic images, to imitate a certain handwriting style and to convey a specific textual content. Our model is unconstrained to any predefined vocabulary, being able to render whatever input word. Given a sample writer, it is also able to mimic its calligraphic features in a few-shot setup. We significantly advance over prior art and demonstrate with qualitative, quantitative and human-based evaluations the realistic aspect of our synthetically produced images. |
|
|
Address |
Virtual; August 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCV |
|
|
Notes |
DAG; 600.140; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KPW2020 |
Serial |
3426 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ali Souibgui; Alicia Fornes; Y.Kessentini; C.Tudor |


|
|
Title |
A Few-shot Learning Approach for Historical Encoded Manuscript Recognition |
Type |
Conference Article |
|
Year |
2021 |
Publication |
25th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
5413-5420 |
|
|
Keywords |
|
|
|
Abstract |
Encoded (or ciphered) manuscripts are a special type of historical documents that contain encrypted text. The automatic recognition of this kind of documents is challenging because: 1) the cipher alphabet changes from one document to another, 2) there is a lack of annotated corpus for training and 3) touching symbols make the symbol segmentation difficult and complex. To overcome these difficulties, we propose a novel method for handwritten ciphers recognition based on few-shot object detection. Our method first detects all symbols of a given alphabet in a line image, and then a decoding step maps the symbol similarity scores to the final sequence of transcribed symbols. By training on synthetic data, we show that the proposed architecture is able to recognize handwritten ciphers with unseen alphabets. In addition, if few labeled pages with the same alphabet are used for fine tuning, our method surpasses existing unsupervised and supervised HTR methods for ciphers recognition. |
|
|
Address |
Virtual; January 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.121; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SFK2021 |
Serial |
3449 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ali Souibgui; Y.Kessentini; Alicia Fornes |

|
|
Title |
A conditional GAN based approach for distorted camera captured documents recovery |
Type |
Conference Article |
|
Year |
2020 |
Publication |
4th Mediterranean Conference on Pattern Recognition and Artificial Intelligence |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Virtual; December 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MedPRAI |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SKF2020 |
Serial |
3450 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero |


|
|
Title |
Recurrent Comparator with attention models to detect counterfeit documents |
Type |
Conference Article |
|
Year |
2019 |
Publication |
15th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper is focused on the detection of counterfeit documents via the recurrent comparison of the security textured background regions of two images. The main contributions are twofold: first we apply and adapt a recurrent comparator architecture with attention mechanism to the counterfeit detection task, which constructs a representation of the background regions by recurrently condition the next observation, learning the difference between genuine and counterfeit images through iterative glimpses. Second we propose a new counterfeit document dataset to ensure the generalization of the learned model towards the detection of the lack of resolution during the counterfeit manufacturing. The presented network, outperforms state-of-the-art classification approaches for counterfeit detection as demonstrated in the evaluation. |
|
|
Address |
Sidney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.140; 600.121; 601.269 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2019 |
Serial |
3456 |
|
Permanent link to this record |
|
|
|
|
Author |
Fernando Vilariño |

|
|
Title |
Library Living Lab, Numérisation 3D des chapiteaux du cloître de Saint-Cugat : des citoyens co- créant le nouveau patrimoine culturel numérique |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Intersectorialité et approche Living Labs. Entretiens Jacques-Cartier |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Montreal; Canada; December 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MV; DAG; 600.140; 600.121;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @ Vil2019a |
Serial |
3457 |
|
Permanent link to this record |
|
|
|
|
Author |
Fernando Vilariño |

|
|
Title |
Public Libraries Exploring how technology transforms the cultural experience of people |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Workshop on Social Impact of AI. Open Living Lab Days Conference. |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Thessaloniki; Grecia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MV; DAG; 600.140; 600.121;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @ Vil2019b |
Serial |
3458 |
|
Permanent link to this record |
|
|
|
|
Author |
Fernando Vilariño |

|
|
Title |
Unveiling the Social Impact of AI |
Type |
Conference Article |
|
Year |
2020 |
Publication |
Workshop at Digital Living Lab Days Conference |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
September 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MV; DAG; 600.121; 600.140;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @ Vil2020 |
Serial |
3459 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Pau Riba; Anjan Dutta; Josep Llados; Yi-Zhe Song |


|
|
Title |
Doodle to Search: Practical Zero-Shot Sketch-Based Image Retrieval |
Type |
Conference Article |
|
Year |
2019 |
Publication |
IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
2179-2188 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future research. |
|
|
Address |
Long beach; CA; USA; June 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.140; 600.121; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRD2019 |
Serial |
3462 |
|
Permanent link to this record |