|
Records |
Links |
|
Author |
Dimosthenis Karatzas; Lluis Gomez; Anguelos Nicolaou; Suman Ghosh; Andrew Bagdanov; Masakazu Iwamura; J. Matas; L. Neumann; V. Ramaseshan; S. Lu ; Faisal Shafait; Seiichi Uchida; Ernest Valveny |
|
|
Title |
ICDAR 2015 Competition on Robust Reading |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1156-1160 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KGN2015 |
Serial |
2690 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
Object Proposals for Text Extraction in the Wild |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
206 - 210 |
|
|
Keywords |
|
|
|
Abstract |
Object Proposals is a recent computer vision technique receiving increasing interest from the research community. Its main objective is to generate a relatively small set of bounding box proposals that are most likely to contain objects of interest. The use of Object Proposals techniques in the scene text understanding field is innovative. Motivated by the success of powerful while expensive techniques to recognize words in a holistic way, Object Proposals techniques emerge as an alternative to the traditional text detectors. In this paper we study to what extent the existing generic Object Proposals methods may be useful for scene text understanding. Also, we propose a new Object Proposals algorithm that is specifically designed for text and compare it with other generic methods in the state of the art. Experiments show that our proposal is superior in its ability of producing good quality word proposals in an efficient way. The source code of our method is made publicly available |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.084; 601.197 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2015 |
Serial |
2691 |
|
Permanent link to this record |
|
|
|
|
Author |
Anguelos Nicolaou; Andrew Bagdanov; Marcus Liwicki; Dimosthenis Karatzas |
|
|
Title |
Sparse Radial Sampling LBP for Writer Identification |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
716-720 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ NBL2015 |
Serial |
2692 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh; Lluis Gomez; Dimosthenis Karatzas; Ernest Valveny |
|
|
Title |
Efficient indexing for Query By String text retrieval |
Type |
Conference Article |
|
Year |
2015 |
Publication |
6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1236 - 1240 |
|
|
Keywords |
|
|
|
Abstract |
This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CBDAR |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGK2015 |
Serial |
2693 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez |
|
|
Title |
Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies |
Type |
Conference Article |
|
Year |
2013 |
Publication |
10th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Bethlehem; PA; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ HVS2013b |
Serial |
2696 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh; Ernest Valveny |
|
|
Title |
Query by String word spotting based on character bi-gram indexing |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
881-885 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GhV2015a |
Serial |
2715 |
|
Permanent link to this record |
|
|
|
|
Author |
R. Bertrand; Oriol Ramos Terrades; P. Gomez-Kramer; P. Franco; Jean-Marc Ogier |
|
|
Title |
A Conditional Random Field model for font forgery detection |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
576 - 580 |
|
|
Keywords |
|
|
|
Abstract |
Nowadays, document forgery is becoming a real issue. A large amount of documents that contain critical information as payment slips, invoices or contracts, are constantly subject to fraudster manipulation because of the lack of security regarding this kind of document. Previously, a system to detect fraudulent documents based on its intrinsic features has been presented. It was especially designed to retrieve copy-move forgery and imperfection due to fraudster manipulation. However, when a set of characters is not present in the original document, copy-move forgery is not feasible. Hence, the fraudster will use a text toolbox to add or modify information in the document by imitating the font or he will cut and paste characters from another document where the font properties are similar. This often results in font type errors. Thus, a clue to detect document forgery consists of finding characters, words or sentences in a document with font properties different from their surroundings. To this end, we present in this paper an automatic forgery detection method based on document font features. Using the Conditional Random Field a measurement of probability that a character belongs to a specific font is made by comparing the character font features to a knowledge database. Then, the character is classified as a genuine or a fake one by comparing its probability to belong to a certain font type with those of the neighboring characters. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRG2015 |
Serial |
2725 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados; David Fernandez; Cristina Cañero |
|
|
Title |
Use case visual Bag-of-Words techniques for camera based identity document classification |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
721 - 725 |
|
|
Keywords |
|
|
|
Abstract |
Nowadays, automatic identity document recognition, including passport and driving license recognition, is at the core of many applications within the administrative and service sectors, such as police, hospitality, car renting, etc. In former years, the document information was manually extracted whereas today this data is recognized automatically from images obtained by flat-bed scanners. Yet, since these scanners tend to be expensive and voluminous, companies in the sector have recently turned their attention to cheaper, small and yet computationally powerful scanners: the mobile devices. The document identity recognition from mobile images enclose several new difficulties w.r.t traditional scanned images, such as the loss of a controlled background, perspective, blurring, etc. In this paper we present a real application for identity document classification of images taken from mobile devices. This classification process is of extreme importance since a prior knowledge of the document type and origin strongly facilitates the subsequent information extraction. The proposed method is based on a traditional Bagof-Words in which we have taken into consideration several key aspects to enhance recognition rate. The method performance has been studied on three datasets containing more than 2000 images from 129 different document classes. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.061; |
Approved |
no |
|
|
Call Number |
Admin @ si @ HRL2015a |
Serial |
2726 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
Attributed Graph Grammar for floor plan analysis |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
726 - 730 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose the use of an Attributed Graph Grammar as unique framework to model and recognize the structure of floor plans. This grammar represents a building as a hierarchical composition of structurally and semantically related elements, where common representations are learned stochastically from annotated data. Given an input image, the parsing consists on constructing that graph representation that better agrees with the probabilistic model defined by the grammar. The proposed method provides several advantages with respect to the traditional floor plan analysis techniques. It uses an unsupervised statistical approach for detecting walls that adapts to different graphical notations and relaxes strong structural assumptions such are straightness and orthogonality. Moreover, the independence between the knowledge model and the parsing implementation allows the method to learn automatically different building configurations and thus, to cope the existing variability. These advantages are clearly demonstrated by comparing it with the most recent floor plan interpretation techniques on 4 datasets of real floor plans with different notations. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HRL2015b |
Serial |
2727 |
|
Permanent link to this record |
|
|
|
|
Author |
Carlos David Martinez Hinarejos; Josep Llados; Alicia Fornes; Francisco Casacuberta; Lluis de Las Heras; Joan Mas; Moises Pastor; Oriol Ramos Terrades; Joan Andreu Sanchez; Enrique Vidal; Fernando Vilariño |
|
|
Title |
Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project |
Type |
Conference Article |
|
Year |
2016 |
Publication |
3rd IberSPEECH |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus. |
|
|
Address |
Lisboa; Portugal; November 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IberSPEECH |
|
|
Notes |
DAG; MV; 600.097;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @MLF2016 |
Serial |
2813 |
|
Permanent link to this record |