toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Adria Molina; Pau Riba; Lluis Gomez; Oriol Ramos Terrades; Josep Llados edit   pdf
doi  openurl
  Title Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume (down) 12822 Issue Pages 306-320  
  Keywords  
  Abstract This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ MRG2021b Serial 3571  
Permanent link to this record
 

 
Author Pau Riba; Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados edit   pdf
doi  openurl
  Title Learning to Rank Words: Optimizing Ranking Metrics for Word Spotting Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume (down) 12822 Issue Pages 381–395  
  Keywords  
  Abstract In this paper, we explore and evaluate the use of ranking-based objective functions for learning simultaneously a word string and a word image encoder. We consider retrieval frameworks in which the user expects a retrieval list ranked according to a defined relevance score. In the context of a word spotting problem, the relevance score has been set according to the string edit distance from the query string. We experimentally demonstrate the competitive performance of the proposed model on query-by-string word spotting for both, handwritten and real scene word images. We also provide the results for query-by-example word spotting, although it is not the main focus of this work.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ RMG2021 Serial 3572  
Permanent link to this record
 

 
Author Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) edit  doi
isbn  openurl
  Title 16th International Conference, 2021, Proceedings, Part II Type Book Whole
  Year 2021 Publication Document Analysis and Recognition – ICDAR 2021 Abbreviated Journal  
  Volume (down) 12822 Issue Pages  
  Keywords  
  Abstract This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
 
  Address Lausanne, Switzerland, September 5-10, 2021  
  Corporate Author Thesis  
  Publisher Springer Cham Place of Publication Editor Josep Llados; Daniel Lopresti; Seiichi Uchida  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86330-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3726  
Permanent link to this record
 

 
Author Ruben Tito; Dimosthenis Karatzas; Ernest Valveny edit   pdf
url  openurl
  Title Document Collection Visual Question Answering Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume (down) 12822 Issue Pages 778-792  
  Keywords Document collection; Visual Question Answering  
  Abstract Current tasks and methods in Document Understanding aims to process documents as single elements. However, documents are usually organized in collections (historical records, purchase invoices), that provide context useful for their interpretation. To address this problem, we introduce Document Collection Visual Question Answering (DocCVQA) a new dataset and related task, where questions are posed over a whole collection of document images and the goal is not only to provide the answer to the given question, but also to retrieve the set of documents that contain the information needed to infer the answer. Along with the dataset we propose a new evaluation metric and baselines which provide further insights to the new dataset and task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ TKV2021 Serial 3622  
Permanent link to this record
 

 
Author Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) edit  doi
isbn  openurl
  Title 16th International Conference, 2021, Proceedings, Part I Type Book Whole
  Year 2021 Publication Document Analysis and Recognition – ICDAR 2021 Abbreviated Journal  
  Volume (down) 12821 Issue Pages  
  Keywords  
  Abstract This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: historical document analysis, document analysis systems, handwriting recognition, scene text detection and recognition, document image processing, natural language processing (NLP) for document understanding, and graphics, diagram and math recognition.
 
  Address Lausanne, Switzerland, September 5-10, 2021  
  Corporate Author Thesis  
  Publisher Springer Cham Place of Publication Editor Josep Llados; Daniel Lopresti; Seiichi Uchida  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86548-1 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3725  
Permanent link to this record
 

 
Author Asma Bensalah; Jialuo Chen; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados; Miguel A. Ferrer edit   pdf
url  openurl
  Title Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches. Type Conference Article
  Year 2020 Publication International Workshop on Artificial Intelligence for Healthcare Applications Abbreviated Journal  
  Volume (down) 12661 Issue Pages 476-489  
  Keywords  
  Abstract Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes DAG; 600.121; 600.140; Approved no  
  Call Number Admin @ si @ BCF2020 Serial 3508  
Permanent link to this record
 

 
Author Anguelos Nicolaou; Sounak Dey; V.Christlein; A.Maier; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings Type Conference Article
  Year 2018 Publication International Workshop on Reproducible Research in Pattern Recognition Abbreviated Journal  
  Volume (down) 11455 Issue Pages 71-82  
  Keywords  
  Abstract Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NDC2018 Serial 3178  
Permanent link to this record
 

 
Author Lluis Gomez; Andres Mafla; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Single Shot Scene Text Retrieval Type Conference Article
  Year 2018 Publication 15th European Conference on Computer Vision Abbreviated Journal  
  Volume (down) 11218 Issue Pages 728-744  
  Keywords Image retrieval; Scene text; Word spotting; Convolutional Neural Networks; Region Proposals Networks; PHOC  
  Abstract Textual information found in scene images provides high level semantic information about the image and its context and it can be leveraged for better scene understanding. In this paper we address the problem of scene text retrieval: given a text query, the system must return all images containing the queried text. The novelty of the proposed model consists in the usage of a single shot CNN architecture that predicts at the same time bounding boxes and a compact text representation of the words in them. In this way, the text based image retrieval task can be casted as a simple nearest neighbor search of the query text representation over the outputs of the CNN over the entire image
database. Our experiments demonstrate that the proposed architecture
outperforms previous state-of-the-art while it offers a significant increase
in processing speed.
 
  Address Munich; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCV  
  Notes DAG; 600.084; 601.338; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ GMR2018 Serial 3143  
Permanent link to this record
 

 
Author Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Learning to Learn from Web Data through Deep Semantic Embeddings Type Conference Article
  Year 2018 Publication 15th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume (down) 11134 Issue Pages 514-529  
  Keywords  
  Abstract In this paper we propose to learn a multimodal image and text embedding from Web and Social Media data, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the pipeline can learn from images with associated text without supervision and perform a thourough analysis of five different text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text based image retrieval task, and we clearly outperform state of the art in the MIRFlickr dataset when training in the target data. Further we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings.  
  Address Munich; Alemanya; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.129; 601.338; 600.121 Approved no  
  Call Number Admin @ si @ GGG2018a Serial 3175  
Permanent link to this record
 

 
Author Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Learning from# Barcelona Instagram data what Locals and Tourists post about its Neighbourhoods Type Conference Article
  Year 2018 Publication 15th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume (down) 11134 Issue Pages 530-544  
  Keywords  
  Abstract Massive tourism is becoming a big problem for some cities, such as Barcelona, due to its concentration in some neighborhoods. In this work we gather Instagram data related to Barcelona consisting on images-captions pairs and, using the text as a supervisory signal, we learn relations between images, words and neighborhoods. Our goal is to learn which visual elements appear in photos when people is posting about each neighborhood. We perform a language separate treatment of the data and show that it can be extrapolated to a tourists and locals separate analysis, and that tourism is reflected in Social Media at a neighborhood level. The presented pipeline allows analyzing the differences between the images that tourists and locals associate to the different neighborhoods. The proposed method, which can be extended to other cities or subjects, proves that Instagram data can be used to train multi-modal (image and text) machine learning models that are useful to analyze publications about a city at a neighborhood level. We publish the collected dataset, InstaBarcelona and the code used in the analysis.  
  Address Munich; Alemanya; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.129; 601.338; 600.121 Approved no  
  Call Number Admin @ si @ GGG2018b Serial 3176  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: