toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) edit  doi
isbn  openurl
  Title 16th International Conference, 2021, Proceedings, Part III Type Book Whole
  Year 2021 Publication Document Analysis and Recognition – ICDAR 2021 Abbreviated Journal  
  Volume 12823 Issue Pages  
  Keywords  
  Abstract This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
 
  Address Lausanne, Switzerland, September 5-10, 2021  
  Corporate Author Thesis  
  Publisher Springer Cham Place of Publication Editor Josep Llados; Daniel Lopresti; Seiichi Uchida  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86333-3 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3727  
Permanent link to this record
 

 
Author Pau Riba; Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados edit   pdf
doi  openurl
  Title Learning to Rank Words: Optimizing Ranking Metrics for Word Spotting Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12822 Issue Pages 381–395  
  Keywords  
  Abstract In this paper, we explore and evaluate the use of ranking-based objective functions for learning simultaneously a word string and a word image encoder. We consider retrieval frameworks in which the user expects a retrieval list ranked according to a defined relevance score. In the context of a word spotting problem, the relevance score has been set according to the string edit distance from the query string. We experimentally demonstrate the competitive performance of the proposed model on query-by-string word spotting for both, handwritten and real scene word images. We also provide the results for query-by-example word spotting, although it is not the main focus of this work.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ RMG2021 Serial 3572  
Permanent link to this record
 

 
Author Adria Molina; Pau Riba; Lluis Gomez; Oriol Ramos Terrades; Josep Llados edit   pdf
doi  openurl
  Title Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12822 Issue Pages 306-320  
  Keywords  
  Abstract This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ MRG2021b Serial 3571  
Permanent link to this record
 

 
Author Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) edit  doi
isbn  openurl
  Title 16th International Conference, 2021, Proceedings, Part II Type Book Whole
  Year 2021 Publication Document Analysis and Recognition – ICDAR 2021 Abbreviated Journal  
  Volume 12822 Issue Pages  
  Keywords  
  Abstract This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
 
  Address Lausanne, Switzerland, September 5-10, 2021  
  Corporate Author Thesis  
  Publisher Springer Cham Place of Publication Editor Josep Llados; Daniel Lopresti; Seiichi Uchida  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86330-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3726  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Raquel Perez edit  doi
openurl 
  Title Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution Type Book Chapter
  Year 2021 Publication Extended Abstracts GEOMVAP 2019, Trends in Mathematics 15 Abbreviated Journal  
  Volume 15 Issue Pages 89–93  
  Keywords  
  Abstract Abnormalities in radiomic measures correlate to genomic alterations prone to alter the outcome of personalized anti-cancer treatments. TOPiomics is a new method for the early detection of variations in tumor imaging phenotype from a topological structure in multi-view radiomic spaces.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Nature Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.120; 600.145; 600.139 Approved no  
  Call Number Admin @ si @ GRP2021 Serial 3594  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title Optical Music Recognition by Long Short-Term Memory Networks Type Book Chapter
  Year 2018 Publication Graphics Recognition. Current Trends and Evolutions Abbreviated Journal  
  Volume 11009 Issue Pages 81-95  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long ShortTerm Memory  
  Abstract Optical Music Recognition refers to the task of transcribing the image of a music score into a machine-readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level. The experimental results are promising, showing the benefits of our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor A. Fornes, B. Lamiroy  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-02283-9 Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 601.302; 601.330; 600.121 Approved no  
  Call Number Admin @ si @ BRC2018 Serial 3227  
Permanent link to this record
 

 
Author Miquel Ferrer; I. Bardaji; Ernest Valveny; Dimosthenis Karatzas; Horst Bunke edit  doi
isbn  openurl
  Title Median Graph Computation by Means of Graph Embedding into Vector Spaces Type Book Chapter
  Year 2013 Publication Graph Embedding for Pattern Analysis Abbreviated Journal  
  Volume Issue Pages 45-72  
  Keywords  
  Abstract In pattern recognition [8, 14], a key issue to be addressed when designing a system is how to represent input patterns. Feature vectors is a common option. That is, a set of numerical features describing relevant properties of the pattern are computed and arranged in a vector form. The main advantages of this kind of representation are computational simplicity and a well sound mathematical foundation. Thus, a large number of operations are available to work with vectors and a large repository of algorithms for pattern analysis and classification exist. However, the simple structure of feature vectors might not be the best option for complex patterns where nonnumerical features or relations between different parts of the pattern become relevant.  
  Address  
  Corporate Author Thesis  
  Publisher Springer New York Place of Publication Editor Yun Fu; Yungian Ma  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-4456-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ FBV2013 Serial 2421  
Permanent link to this record
 

 
Author Alicia Fornes; Gemma Sanchez edit  doi
isbn  openurl
  Title Analysis and Recognition of Music Scores Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume E Issue Pages 749-774  
  Keywords  
  Abstract The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-860-7 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ FoS2014 Serial 2484  
Permanent link to this record
 

 
Author Josep Llados; Marçal Rusiñol edit  doi
isbn  openurl
  Title Graphics Recognition Techniques Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume D Issue Pages 489-521  
  Keywords Dimension recognition; Graphics recognition; Graphic-rich documents; Polygonal approximation; Raster-to-vector conversion; Texture-based primitive extraction; Text-graphics separation  
  Abstract This chapter describes the most relevant approaches for the analysis of graphical documents. The graphics recognition pipeline can be splitted into three tasks. The low level or lexical task extracts the basic units composing the document. The syntactic level is focused on the structure, i.e., how graphical entities are constructed, and involves the location and classification of the symbols present in the document. The third level is a functional or semantic level, i.e., it models what the graphical symbols do and what they mean in the context where they appear. This chapter covers the lexical level, while the next two chapters are devoted to the syntactic and semantic level, respectively. The main problems reviewed in this chapter are raster-to-vector conversion (vectorization algorithms) and the separation of text and graphics components. The research and industrial communities have provided standard methods achieving reasonable performance levels. Hence, graphics recognition techniques can be considered to be in a mature state from a scientific point of view. Additionally this chapter provides insights on some related problems, namely, the extraction and recognition of dimensions in engineering drawings, and the recognition of hatched and tiled patterns. Both problems are usually associated, even integrated, in the vectorization process.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-858-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ LlR2014 Serial 2380  
Permanent link to this record
 

 
Author Salvatore Tabbone; Oriol Ramos Terrades edit  doi
isbn  openurl
  Title An Overview of Symbol Recognition Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume D Issue Pages 523-551  
  Keywords Pattern recognition; Shape descriptors; Structural descriptors; Symbolrecognition; Symbol spotting  
  Abstract According to the Cambridge Dictionaries Online, a symbol is a sign, shape, or object that is used to represent something else. Symbol recognition is a subfield of general pattern recognition problems that focuses on identifying, detecting, and recognizing symbols in technical drawings, maps, or miscellaneous documents such as logos and musical scores. This chapter aims at providing the reader an overview of the different existing ways of describing and recognizing symbols and how the field has evolved to attain a certain degree of maturity.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-858-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ TaT2014 Serial 2489  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: