toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Fernando Vilariño edit  openurl
  Title Unveiling the Social Impact of AI Type (up) Conference Article
  Year 2020 Publication Workshop at Digital Living Lab Days Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; DAG; 600.121; 600.140;SIAI Approved no  
  Call Number Admin @ si @ Vil2020 Serial 3459  
Permanent link to this record
 

 
Author Sounak Dey; Pau Riba; Anjan Dutta; Josep Llados; Yi-Zhe Song edit   pdf
url  doi
openurl 
  Title Doodle to Search: Practical Zero-Shot Sketch-Based Image Retrieval Type (up) Conference Article
  Year 2019 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2179-2188  
  Keywords  
  Abstract In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future research.  
  Address Long beach; CA; USA; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.140; 600.121; 600.097 Approved no  
  Call Number Admin @ si @ DRD2019 Serial 3462  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Raquel Perez edit   pdf
openurl 
  Title Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution Type (up) Conference Article
  Year 2020 Publication Women in Geometry and Topology Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Barcelona; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.139; 600.145; 600.121 Approved no  
  Call Number Admin @ si @ GRP2020 Serial 3473  
Permanent link to this record
 

 
Author Andres Mafla; Sounak Dey; Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval Type (up) Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 4022-4032  
  Keywords  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MDB2021 Serial 3491  
Permanent link to this record
 

 
Author Andres Mafla; Rafael S. Rezende; Lluis Gomez; Diana Larlus; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title StacMR: Scene-Text Aware Cross-Modal Retrieval Type (up) Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2219-2229  
  Keywords  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MRG2021a Serial 3492  
Permanent link to this record
 

 
Author Raul Gomez; Yahui Liu; Marco de Nadai; Dimosthenis Karatzas; Bruno Lepri; Nicu Sebe edit   pdf
url  openurl
  Title Retrieval Guided Unsupervised Multi-domain Image to Image Translation Type (up) Conference Article
  Year 2020 Publication 28th ACM International Conference on Multimedia Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACM  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GLN2020 Serial 3497  
Permanent link to this record
 

 
Author Minesh Mathew; Dimosthenis Karatzas; C.V. Jawahar edit   pdf
openurl 
  Title DocVQA: A Dataset for VQA on Document Images Type (up) Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2200-2209  
  Keywords  
  Abstract We present a new dataset for Visual Question Answering (VQA) on document images called DocVQA. The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension is presented. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial. The dataset, code and leaderboard are available at docvqa. org  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MKJ2021 Serial 3498  
Permanent link to this record
 

 
Author Asma Bensalah; Jialuo Chen; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados; Miguel A. Ferrer edit   pdf
url  openurl
  Title Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches. Type (up) Conference Article
  Year 2020 Publication International Workshop on Artificial Intelligence for Healthcare Applications Abbreviated Journal  
  Volume 12661 Issue Pages 476-489  
  Keywords  
  Abstract Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes DAG; 600.121; 600.140; Approved no  
  Call Number Admin @ si @ BCF2020 Serial 3508  
Permanent link to this record
 

 
Author Manuel Carbonell; Pau Riba; Mauricio Villegas; Alicia Fornes; Josep Llados edit   pdf
openurl 
  Title Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents Type (up) Conference Article
  Year 2020 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The use of administrative documents to communicate and leave record of business information requires of methods
able to automatically extract and understand the content from
such documents in a robust and efficient way. In addition,
the semi-structured nature of these reports is specially suited
for the use of graph-based representations which are flexible
enough to adapt to the deformations from the different document
templates. Moreover, Graph Neural Networks provide the proper
methodology to learn relations among the data elements in
these documents. In this work we study the use of Graph
Neural Network architectures to tackle the problem of entity
recognition and relation extraction in semi-structured documents.
Our approach achieves state of the art results in the three
tasks involved in the process. Additionally, the experimentation
with two datasets of different nature demonstrates the good
generalization ability of our approach.
 
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ CRV2020 Serial 3509  
Permanent link to this record
 

 
Author Klara Janousckova; Jiri Matas; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Text Recognition – Real World Data and Where to Find Them Type (up) Conference Article
  Year 2020 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 4489-4496  
  Keywords  
  Abstract We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The method includes matching of imprecise transcriptions to weak annotations and an edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as “pseudo ground truth” (PGT). The method is applied to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7% on average, across different benchmark datasets (image domains) and 24.5% on one of the weakly annotated datasets 1 1 Acknowledgements. The authors were supported by Czech Technical University student grant SGS20/171/0HK3/3TJ13, the MEYS VVV project CZ.02.1.01/0.010.0J16 019/0000765 Research Center for Informatics, the Spanish Research project TIN2017-89779-P and the CERCA Programme / Generalitat de Catalunya.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ JMG2020 Serial 3557  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: