toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Gemma Sanchez; Alicia Fornes; Joan Mas; Josep Llados edit  openurl
  Title (up) Computer Vision Tools for Visually Impaired Children Learning Type Journal
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ SFM2007a Serial 891  
Permanent link to this record
 

 
Author Gemma Sanchez; Alicia Fornes; Joan Mas; Josep Llados edit  openurl
  Title (up) Computer Vision Tools for Visually Impaired Children Learning Type Journal
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ SFM2007b Serial 892  
Permanent link to this record
 

 
Author Debora Gil; Jordi Gonzalez; Gemma Sanchez (eds) edit  isbn
openurl 
  Title (up) Computer Vision: Advances in Research and Development Type Book Whole
  Year 2007 Publication Proceedings of the 2nd CVC International Workshop Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher UAB Place of Publication Bellaterra (Spain) Editor Debora Gil; Jordi Gonzalez; Gemma Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title 2 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-935251-4-9 Medium  
  Area Expedition Conference  
  Notes IAM; ISE; DAG Approved no  
  Call Number IAM @ iam @ GGS2007 Serial 1493  
Permanent link to this record
 

 
Author Josep Llados edit  isbn
openurl 
  Title (up) Computer Vision: Progress of Research and Development Type Book Whole
  Year 2006 Publication 1st CVC Internal Workshop Computer Vision: Progress of Research and Development, Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor J. Llados (ed.),  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-8-9 Medium  
  Area Expedition Conference CVCRD  
  Notes DAG Approved no  
  Call Number DAG @ dag @ Lla2006b Serial 766  
Permanent link to this record
 

 
Author L.Tarazon; D. Perez; N. Serrano; V. Alabau; Oriol Ramos Terrades; A. Sanchis; A. Juan edit  doi
isbn  openurl
  Title (up) Confidence Measures for Error Correction in Interactive Transcription of Handwritten Text Type Conference Article
  Year 2009 Publication 15th International Conference on Image Analysis and Processing Abbreviated Journal  
  Volume 5716 Issue Pages 567-574  
  Keywords  
  Abstract An effective approach to transcribe old text documents is to follow an interactive-predictive paradigm in which both, the system is guided by the human supervisor, and the supervisor is assisted by the system to complete the transcription task as efficiently as possible. In this paper, we focus on a particular system prototype called GIDOC, which can be seen as a first attempt to provide user-friendly, integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. More specifically, we focus on the handwriting recognition part of GIDOC, for which we propose the use of confidence measures to guide the human supervisor in locating possible system errors and deciding how to proceed. Empirical results are reported on two datasets showing that a word error rate not larger than a 10% can be achieved by only checking the 32% of words that are recognised with less confidence.  
  Address Vietri sul Mare, Italy  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-04145-7 Medium  
  Area Expedition Conference ICIAP  
  Notes DAG Approved no  
  Call Number Admin @ si @ TPS2009 Serial 1871  
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Marcal Rusinol; Alicia Fornes; Mauricio Villegas edit  url
doi  openurl
  Title (up) Content and Style Aware Generation of Text-line Images for Handwriting Recognition Type Journal Article
  Year 2021 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume Issue Pages  
  Keywords  
  Abstract Handwritten Text Recognition has achieved an impressive performance in public benchmarks. However, due to the high inter- and intra-class variability between handwriting styles, such recognizers need to be trained using huge volumes of manually labeled training data. To alleviate this labor-consuming problem, synthetic data produced with TrueType fonts has been often used in the training loop to gain volume and augment the handwriting style variability. However, there is a significant style bias between synthetic and real data which hinders the improvement of recognition performance. To deal with such limitations, we propose a generative method for handwritten text-line images, which is conditioned on both visual appearance and textual content. Our method is able to produce long text-line samples with diverse handwriting styles. Once properly trained, our method can also be adapted to new target data by only accessing unlabeled text-line images to mimic handwritten styles and produce images with any textual content. Extensive experiments have been done on making use of the generated samples to boost Handwritten Text Recognition performance. Both qualitative and quantitative results demonstrate that the proposed approach outperforms the current state of the art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ KRR2021 Serial 3612  
Permanent link to this record
 

 
Author Carlos David Martinez Hinarejos; Josep Llados; Alicia Fornes; Francisco Casacuberta; Lluis de Las Heras; Joan Mas; Moises Pastor; Oriol Ramos Terrades; Joan Andreu Sanchez; Enrique Vidal; Fernando Vilariño edit   pdf
openurl 
  Title (up) Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project Type Conference Article
  Year 2016 Publication 3rd IberSPEECH Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus.
 
  Address Lisboa; Portugal; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IberSPEECH  
  Notes DAG; MV; 600.097;SIAI Approved no  
  Call Number Admin @ si @MLF2016 Serial 2813  
Permanent link to this record
 

 
Author David Fernandez edit  isbn
openurl 
  Title (up) Contextual Word Spotting in Historical Handwritten Documents Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract There are countless collections of historical documents in archives and libraries that contain plenty of valuable information for historians and researchers. The extraction of this information has become a central task among the Document Analysis researches and practitioners.
There is an increasing interest to digital preserve and provide access to these kind of documents. But only the digitalization is not enough for the researchers. The extraction and/or indexation of information of this documents has had an increased interest among researchers. In many cases, and in particular in historical manuscripts, the full transcription of these documents is extremely dicult due the inherent de ciencies: poor physical preservation, di erent writing styles, obsolete languages, etc. Word spotting has become a popular an ecient alternative to full transcription. It inherently involves a high level of degradation in the images. The search of words is holistically
formulated as a visual search of a given query shape in a larger image, instead of recognising the input text and searching the query word with an ascii string comparison. But the performance of classical word spotting approaches depend on the degradation level of the images being unacceptable in many cases . In this thesis we have proposed a novel paradigm called contextual word spotting method that uses the contextual/semantic information to achieve acceptable results whereas classical word spotting does not reach. The contextual word spotting framework proposed in this thesis is a segmentation-based word spotting approach, so an ecient word segmentation is needed. Historical handwritten
documents present some common diculties that can increase the diculties the extraction of the words. We have proposed a line segmentation approach that formulates the problem as nding the central part path in the area between two consecutive lines. This is solved as a graph traversal problem. A path nding algorithm is used to nd the optimal path in a graph, previously computed, between the text lines. Once the text lines are extracted, words are localized inside the text lines using a word segmentation technique from the state of the
art. Classical word spotting approaches can be improved using the contextual information of the documents. We have introduced a new framework, oriented to handwritten documents that present a highly structure, to extract information making use of context. The framework is an ecient tool for semi-automatic transcription that uses the contextual information to achieve better results than classical word spotting approaches. The contextual information is
automatically discovered by recognizing repetitive structures and categorizing all the words according to semantic classes. The most frequent words in each semantic cluster are extracted and the same text is used to transcribe all them. The experimental results achieved in this thesis outperform classical word spotting approaches demonstrating the suitability of the proposed ensemble architecture for spotting words in historical handwritten documents using contextual information.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-7-1 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Fer2014 Serial 2573  
Permanent link to this record
 

 
Author David Fernandez; Simone Marinai; Josep Llados; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title (up) Contextual Word Spotting in Historical Manuscripts using Markov Logic Networks Type Conference Article
  Year 2013 Publication 2nd International Workshop on Historical Document Imaging and Processing Abbreviated Journal  
  Volume Issue Pages 36-43  
  Keywords  
  Abstract Natural languages can often be modelled by suitable grammars whose knowledge can improve the word spotting results. The implicit contextual information is even more useful when dealing with information that is intrinsically described as one collection of records. In this paper, we present one approach to word spotting which uses the contextual information of records to improve the results. The method relies on Markov Logic Networks to probabilistically model the relational organization of handwritten records. The performance has been evaluated on the Barcelona Marriages Dataset that contains structured handwritten records that summarize marriage information.  
  Address washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-2115-0 Medium  
  Area Expedition Conference HIP  
  Notes DAG; 600.056; 600.045; 600.061; 602.006 Approved no  
  Call Number Admin @ si @ FML2013 Serial 2308  
Permanent link to this record
 

 
Author Agnes Borras edit   pdf
openurl 
  Title (up) Contributions to the Content-Based Image Retrieval Using Pictorial Queries Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The broad access to digital cameras, personal computers and Internet, has lead to the generation of large volumes of data in digital form. If we want an effective usage of this huge amount of data, we need automatic tools to allow the retrieval of relevant information. Image data is a particular type of information that requires specific techniques of description and indexing. The computer vision field that studies these kind of techniques is called Content-Based Image Retrieval (CBIR). Instead of using text-based descriptions, a system of CBIR deals on properties that are inherent in the images themselves. Hence, the feature-based description provides a universal via of image expression in contrast with the more than 6000 languages spoken in the world.
Nowadays, the CBIR is a dynamic focus of research that has derived in important applications for many professional groups. The potential fields of application can be such diverse as: the medical domain, the crime prevention, the protection of the intel- lectual property, the journalism, the graphic design, the web search, the preservation of cultural heritage, etc.
The definition on the role of the user is a key point in the development of a CBIR application. The user is in charge to formulate the queries from which the images are retrieved. We have centered our attention on the image retrieval techniques that use queries based on pictorial information. We have identified a taxonomy composed by four main query paradigms: query-by-selection, query-by-iconic-composition, query- by-sketch and query-by-paint. Each one of these paradigms allows a different degree of user expressivity. From a simple image selection, to a complete painting of the query, the user takes control of the input in the CBIR system.
Along the chapters of this thesis we have analyzed the influence that each query paradigm imposes in the internal operations of a CBIR system. Moreover, we have proposed a set of contributions that we have exemplified in the context of a final application.
 
  Address Barcelona (Spain)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Bellaterra Editor Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; Approved no  
  Call Number DAG @ dag @ Bor2009; IAM @ iam @ Bor2009 Serial 1269  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: