toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alloy Das; Sanket Biswas; Umapada Pal; Josep Llados edit   pdf
url  openurl
  Title (down) Diving into the Depths of Spotting Text in Multi-Domain Noisy Scenes Type Conference Article
  Year 2024 Publication IEEE International Conference on Robotics and Automation in PACIFICO Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and fine-tuning strategies on natural scene datasets, which do not exploit the feature interaction across other complex domains. In this work, we explore and investigate the problem of domain-agnostic scene text spotting, i.e., training a model on multi-domain source data such that it can directly generalize to target domains rather than being specialized for a specific domain or scenario. In this regard, we present the community a text spotting validation benchmark called Under-Water Text (UWT) for noisy underwater scenes to establish an important case study. Moreover, we also design an efficient super-resolution based end-to-end transformer baseline called DA-TextSpotter which achieves comparable or superior performance over existing text spotting architectures for both regular and arbitrary-shaped scene text spotting benchmarks in terms of both accuracy and model efficiency. The dataset, code and pre-trained models will be released upon acceptance.  
  Address Yokohama; Japan; May 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICRA  
  Notes DAG Approved no  
  Call Number Admin @ si @ DBP2024 Serial 3979  
Permanent link to this record
 

 
Author Ariel Amato; Angel Sappa; Alicia Fornes; Felipe Lumbreras; Josep Llados edit   pdf
doi  isbn
openurl 
  Title (down) Divide and Conquer: Atomizing and Parallelizing A Task in A Mobile Crowdsourcing Platform Type Conference Article
  Year 2013 Publication 2nd International ACM Workshop on Crowdsourcing for Multimedia Abbreviated Journal  
  Volume Issue Pages 21-22  
  Keywords  
  Abstract In this paper we present some conclusions about the advantages of having an efficient task formulation when a crowdsourcing platform is used. In particular we show how the task atomization and distribution can help to obtain results in an efficient way. Our proposal is based on a recursive splitting of the original task into a set of smaller and simpler tasks. As a result both more accurate and faster solutions are obtained. Our evaluation is performed on a set of ancient documents that need to be digitized.  
  Address Barcelona; October 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-2396-3 Medium  
  Area Expedition Conference CrowdMM  
  Notes ADAS; ISE; DAG; 600.054; 600.055; 600.045; 600.061; 602.006 Approved no  
  Call Number Admin @ si @ SLA2013 Serial 2335  
Permanent link to this record
 

 
Author Pau Riba edit  isbn
openurl 
  Title (down) Distilling Structure from Imagery: Graph-based Models for the Interpretation of Document Images Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract From its early stages, the community of Pattern Recognition and Computer Vision has considered the importance of leveraging the structural information when understanding images. Usually, graphs have been proposed as a suitable model to represent this kind of information due to their flexibility and representational power able to codify both, the components, objects, or entities and their pairwise relationship. Even though graphs have been successfully applied to a huge variety of tasks, as a result of their symbolic and relational nature, graphs have always suffered from some limitations compared to statistical approaches. Indeed, some trivial mathematical operations do not have an equivalence in the graph domain. For instance, in the core of many pattern recognition applications, there is a need to compare two objects. This operation, which is trivial when considering feature vectors defined in \(\mathbb{R}^n\), is not properly defined for graphs.


In this thesis, we have investigated the importance of the structural information from two perspectives, the traditional graph-based methods and the new advances on Geometric Deep Learning. On the one hand, we explore the problem of defining a graph representation and how to deal with it on a large scale and noisy scenario. On the other hand, Graph Neural Networks are proposed to first redefine a Graph Edit Distance methodologies as a metric learning problem, and second, to apply them in a real use case scenario for the detection of repetitive patterns which define tables in invoice documents. As experimental framework, we have validated the different methodological contributions in the domain of Document Image Analysis and Recognition.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-6-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Rib20 Serial 3478  
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas edit   pdf
openurl 
  Title (down) Distilling Content from Style for Handwritten Word Recognition Type Conference Article
  Year 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite the latest transcription accuracies reached using deep neural network architectures, handwritten text recognition still remains a challenging problem, mainly because of the large inter-writer style variability. Both augmenting the training set with artificial samples using synthetic fonts, and writer adaptation techniques have been proposed to yield more generic approaches aimed at dodging style unevenness. In this work, we take a step closer to learn style independent features from handwritten word images. We propose a novel method that is able to disentangle the content and style aspects of input images by jointly optimizing a generative process and a handwritten
word recognizer. The generator is aimed at transferring writing style features from one sample to another in an image-to-image translation approach, thus leading to a learned content-centric features that shall be independent to writing style attributes.
Our proposed recognition model is able then to leverage such writer-agnostic features to reach better recognition performances. We advance over prior training strategies and demonstrate with qualitative and quantitative evaluations the performance of both
the generative process and the recognition efficiency in the IAM dataset.
 
  Address Virtual ICFHR; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.129; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ KRR2020 Serial 3425  
Permanent link to this record
 

 
Author Carlos Boned Riera; Oriol Ramos Terrades edit  doi
openurl 
  Title (down) Discriminative Neural Variational Model for Unbalanced Classification Tasks in Knowledge Graph Type Conference Article
  Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2186-2191  
  Keywords Measurement; Couplings; Semantics; Ear; Benchmark testing; Data models; Pattern recognition  
  Abstract Nowadays the paradigm of link discovery problems has shown significant improvements on Knowledge Graphs. However, method performances are harmed by the unbalanced nature of this classification problem, since many methods are easily biased to not find proper links. In this paper we present a discriminative neural variational auto-encoder model, called DNVAE from now on, in which we have introduced latent variables to serve as embedding vectors. As a result, the learnt generative model approximate better the underlying distribution and, at the same time, it better differentiate the type of relations in the knowledge graph. We have evaluated this approach on benchmark knowledge graph and Census records. Results in this last data set are quite impressive since we reach the highest possible score in the evaluation metrics. However, further experiments are still needed to deeper evaluate the performance of the method in more challenging tasks.  
  Address Montreal; Quebec; Canada; August 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.162 Approved no  
  Call Number Admin @ si @ BoR2022 Serial 3741  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit  openurl
  Title (down) Dimensions analysis in hand-drawn architectural drawings Type Conference Article
  Year 1997 Publication (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages 90-91  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication CVC-UAB Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1997 Serial 1659  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit  doi
isbn  openurl
  Title (down) Dimensionality Reduction for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition Abbreviated Journal  
  Volume 6658 Issue Pages 22-31  
  Keywords  
  Abstract The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs.  
  Address Münster, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Xiaoyi Jiang; Miquel Ferrer; Andrea Torsello  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-20843-0 Medium  
  Area Expedition Conference GbRPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2011a Serial 1743  
Permanent link to this record
 

 
Author Marc Sunset Perez; Marc Comino Trinidad; Dimosthenis Karatzas; Antonio Chica Calaf; Pere Pau Vazquez Alcocer edit  url
openurl 
  Title (down) Development of general‐purpose projection‐based augmented reality systems Type Journal
  Year 2016 Publication IADIs international journal on computer science and information systems Abbreviated Journal IADIs  
  Volume 11 Issue 2 Pages 1-18  
  Keywords  
  Abstract Despite the large amount of methods and applications of augmented reality, there is little homogenizatio n on the software platforms that support them. An exception may be the low level control software that is provided by some high profile vendors such as Qualcomm and Metaio. However, these provide fine grain modules for e.g. element tracking. We are more co ncerned on the application framework, that includes the control of the devices working together for the development of the AR experience. In this paper we describe the development of a software framework for AR setups. We concentrate on the modular design of the framework, but also on some hard problems such as the calibration stage, crucial for projection – based AR. The developed framework is suitable and has been tested in AR applications using camera – projector pairs, for both fixed and nomadic setups  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084 Approved no  
  Call Number Admin @ si @ SCK2016 Serial 2890  
Permanent link to this record
 

 
Author Dimosthenis Karatzas edit  openurl
  Title (down) Detecting Gradients in Text Images Using the Hough Transform Type Conference Article
  Year 2008 Publication Proceedings of the 8th International Workshop on Document Analysis Systems, Abbreviated Journal  
  Volume Issue Pages 245–252  
  Keywords  
  Abstract  
  Address Nara (Japan)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG Approved no  
  Call Number DAG @ dag @ Kar2008 Serial 1062  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny edit  openurl
  Title (down) Descriptor-based Svm Wall Detector Type Conference Article
  Year 2011 Publication 9th International Workshop on Graphic Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Architectural floorplans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. In this paper we describe an evolution of this new approach in two directions: firstly we evaluate different features to obtain the description of every patch. Secondly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These modifications of the method have been tested for wall detection on two datasets of architectural floorplans with different notations and compared with the results obtained with the original approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ HMS2011b Serial 1819  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: