toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Lei Kang; Pau Riba; Yaxing Wang; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas edit   pdf
openurl 
  Title (down) GANwriting: Content-Conditioned Generation of Styled Handwritten Word Images Type Conference Article
  Year 2020 Publication 16th European Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Although current image generation methods have reached impressive quality levels, they are still unable to produce plausible yet diverse images of handwritten words. On the contrary, when writing by hand, a great variability is observed across different writers, and even when analyzing words scribbled by the same individual, involuntary variations are conspicuous. In this work, we take a step closer to producing realistic and varied artificially rendered handwritten words. We propose a novel method that is able to produce credible handwritten word images by conditioning the generative process with both calligraphic style features and textual content. Our generator is guided by three complementary learning objectives: to produce realistic images, to imitate a certain handwriting style and to convey a specific textual content. Our model is unconstrained to any predefined vocabulary, being able to render whatever input word. Given a sample writer, it is also able to mimic its calligraphic features in a few-shot setup. We significantly advance over prior art and demonstrate with qualitative, quantitative and human-based evaluations the realistic aspect of our synthetically produced images.  
  Address Virtual; August 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCV  
  Notes DAG; 600.140; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ KPW2020 Serial 3426  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard edit  url
doi  openurl
  Title (down) Fuzzy Multilevel Graph Embedding Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 2 Pages 551-565  
  Keywords Pattern recognition; Graphics recognition; Graph clustering; Graph classification; Explicit graph embedding; Fuzzy logic  
  Abstract Structural pattern recognition approaches offer the most expressive, convenient, powerful but computational expensive representations of underlying relational information. To benefit from mature, less expensive and efficient state-of-the-art machine learning models of statistical pattern recognition they must be mapped to a low-dimensional vector space. Our method of explicit graph embedding bridges the gap between structural and statistical pattern recognition. We extract the topological, structural and attribute information from a graph and encode numeric details by fuzzy histograms and symbolic details by crisp histograms. The histograms are concatenated to achieve a simple and straightforward embedding of graph into a low-dimensional numeric feature vector. Experimentation on standard public graph datasets shows that our method outperforms the state-of-the-art methods of graph embedding for richly attributed graphs.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.042; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ LRL2013a Serial 2270  
Permanent link to this record
 

 
Author Dena Bazazian edit  isbn
openurl 
  Title (down) Fully Convolutional Networks for Text Understanding in Scene Images Type Book Whole
  Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Text understanding in scene images has gained plenty of attention in the computer vision community and it is an important task in many applications as text carries semantically rich information about scene content and context. For instance, reading text in a scene can be applied to autonomous driving, scene understanding or assisting visually impaired people. The general aim of scene text understanding is to localize and recognize text in scene images. Text regions are first localized in the original image by a trained detector model and afterwards fed into a recognition module. The tasks of localization and recognition are highly correlated since an inaccurate localization can affect the recognition task.
The main purpose of this thesis is to devise efficient methods for scene text understanding. We investigate how the latest results on deep learning can advance text understanding pipelines. Recently, Fully Convolutional Networks (FCNs) and derived methods have achieved a significant performance on semantic segmentation and pixel level classification tasks. Therefore, we took benefit of the strengths of FCN approaches in order to detect text in natural scenes. In this thesis we have focused on two challenging tasks of scene text understanding which are Text Detection and Word Spotting. For the task of text detection, we have proposed an efficient text proposal technique in scene images. We have considered the Text Proposals method as the baseline which is an approach to reduce the search space of possible text regions in an image. In order to improve the Text Proposals method we combined it with Fully Convolutional Networks to efficiently reduce the number of proposals while maintaining the same level of accuracy and thus gaining a significant speed up. Our experiments demonstrate that this text proposal approach yields significantly higher recall rates than the line based text localization techniques, while also producing better-quality localization. We have also applied this technique on compressed images such as videos from wearable egocentric cameras. For the task of word spotting, we have introduced a novel mid-level word representation method. We have proposed a technique to create and exploit an intermediate representation of images based on text attributes which roughly correspond to character probability maps. Our representation extends the concept of Pyramidal Histogram Of Characters (PHOC) by exploiting Fully Convolutional Networks to derive a pixel-wise mapping of the character distribution within candidate word regions. We call this representation the Soft-PHOC. Furthermore, we show how to use Soft-PHOC descriptors for word spotting tasks through an efficient text line proposal algorithm. To evaluate the detected text, we propose a novel line based evaluation along with the classic bounding box based approach. We test our method on incidental scene text images which comprises real-life scenarios such as urban scenes. The importance of incidental scene text images is due to the complexity of backgrounds, perspective, variety of script and language, short text and little linguistic context. All of these factors together makes the incidental scene text images challenging.
 
  Address November 2018  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Dimosthenis Karatzas;Andrew Bagdanov  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-1-1 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Baz2018 Serial 3220  
Permanent link to this record
 

 
Author Utkarsh Porwal; Alicia Fornes; Faisal Shafait (eds) edit  doi
isbn  openurl
  Title (down) Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition. 18th International Conference, ICFHR 2022 Type Book Whole
  Year 2022 Publication Frontiers in Handwriting Recognition. Abbreviated Journal  
  Volume 13639 Issue Pages  
  Keywords  
  Abstract  
  Address ICFHR 2022, Hyderabad, India, December 4–7, 2022  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Utkarsh Porwal; Alicia Fornes; Faisal Shafait  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-031-21648-0 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number Admin @ si @ PFS2022 Serial 3809  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit  url
openurl 
  Title (down) From Optical Music Recognition to Handwritten Music Recognition: a Baseline Type Journal Article
  Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 123 Issue Pages 1-8  
  Keywords  
  Abstract Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.302; 601.330; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BRC2019 Serial 3275  
Permanent link to this record
 

 
Author Hongxing Gao edit  isbn
openurl 
  Title (down) Focused Structural Document Image Retrieval in Digital Mailroom Applications Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this work, we develop a generic framework that is able to handle the document retrieval problem in various scenarios such as searching for full page matches or retrieving the counterparts for specific document areas, focusing on their structural similarity or letting their visual resemblance to play a dominant role. Based on the spatial indexing technique, we propose to search for matches of local key-region pairs carrying both structural and visual information from the collection while a scheme allowing to adjust the relative contribution of structural and visual similarity is presented.
Based on the fact that the structure of documents is tightly linked with the distance among their elements, we firstly introduce an efficient detector named Distance Transform based Maximally Stable Extremal Regions (DTMSER). We illustrate that this detector is able to efficiently extract the structure of a document image as a dendrogram (hierarchical tree) of multi-scale key-regions that roughly correspond to letters, words and paragraphs. We demonstrate that, without benefiting from the structure information, the key-regions extracted by the DTMSER algorithm achieve better results comparing with state-of-the-art methods while much less amount of key-regions are employed.
We subsequently propose a pair-wise Bag of Words (BoW) framework to efficiently embed the explicit structure extracted by the DTMSER algorithm. We represent each document as a list of key-region pairs that correspond to the edges in the dendrogram where inclusion relationship is encoded. By employing those structural key-region pairs as the pooling elements for generating the histogram of features, the proposed method is able to encode the explicit inclusion relations into a BoW representation. The experimental results illustrate that the pair-wise BoW, powered by the embedded structural information, achieves remarkable improvement over the conventional BoW and spatial pyramidal BoW methods.
To handle various retrieval scenarios in one framework, we propose to directly query a series of key-region pairs, carrying both structure and visual information, from the collection. We introduce the spatial indexing techniques to the document retrieval community to speed up the structural relationship computation for key-region pairs. We firstly test the proposed framework in a full page retrieval scenario where structurally similar matches are expected. In this case, the pair-wise querying method achieves notable improvement over the BoW and spatial pyramidal BoW frameworks. Furthermore, we illustrate that the proposed method is also able to handle focused retrieval situations where the queries are defined as a specific interesting partial areas of the images. We examine our method on two types of focused queries: structure-focused and exact queries. The experimental results show that, the proposed generic framework obtains nearly perfect precision on both types of focused queries while it is the first framework able to tackle structure-focused queries, setting a new state of the art in the field.
Besides, we introduce a line verification method to check the spatial consistency among the matched key-region pairs. We propose a computationally efficient version of line verification through a two step implementation. We first compute tentative localizations of the query and subsequently employ them to divide the matched key-region pairs into several groups, then line verification is performed within each group while more precise bounding boxes are computed. We demonstrate that, comparing with the standard approach (based on RANSAC), the line verification proposed generally achieves much higher recall with slight loss on precision on specific queries.
 
  Address January 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Dimosthenis Karatzas;Marçal Rusiñol  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-0-7 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Gao2015 Serial 2577  
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados edit  doi
openurl 
  Title (down) Flowchart Recognition in Patent Information Retrieval Type Book Chapter
  Year 2017 Publication Current Challenges in Patent Information Retrieval Abbreviated Journal  
  Volume 37 Issue Pages 351-368  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor M. Lupu; K. Mayer; N. Kando; A.J. Trippe  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ RuL2017 Serial 2896  
Permanent link to this record
 

 
Author Marçal Rusiñol; Lluis Pere de las Heras; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title (down) Flowchart Recognition for Non-Textual Information Retrieval in Patent Search Type Journal Article
  Year 2014 Publication Information Retrieval Abbreviated Journal IR  
  Volume 17 Issue 5-6 Pages 545-562  
  Keywords Flowchart recognition; Patent documents; Text/graphics separation; Raster-to-vector conversion; Symbol recognition  
  Abstract Relatively little research has been done on the topic of patent image retrieval and in general in most of the approaches the retrieval is performed in terms of a similarity measure between the query image and the images in the corpus. However, systems aimed at overcoming the semantic gap between the visual description of patent images and their conveyed concepts would be very helpful for patent professionals. In this paper we present a flowchart recognition method aimed at achieving a structured representation of flowchart images that can be further queried semantically. The proposed method was submitted to the CLEF-IP 2012 flowchart recognition task. We report the obtained results on this dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-4564 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ RHR2013 Serial 2342  
Permanent link to this record
 

 
Author Andres Mafla; Sounak Dey; Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title (down) Fine-grained Image Classification and Retrieval by Combining Visual and Locally Pooled Textual Features Type Conference Article
  Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Text contained in an image carries high-level semantics that can be exploited to achieve richer image understanding. In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks such as image retrieval, fine-grained classification, and visual question answering. In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities. The novelty of the proposed model consists of the usage of a PHOC descriptor to construct a bag of textual words along with a Fisher Vector Encoding that captures the morphology of text. This approach provides a stronger multimodal representation for this task and as our experiments demonstrate, it achieves state-of-the-art results on two different tasks, fine-grained classification and image retrieval.  
  Address Aspen; Colorado; USA; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ MDB2020 Serial 3334  
Permanent link to this record
 

 
Author Josep Llados; Horst Bunke; Enric Marti edit   pdf
url  doi
openurl 
  Title (down) Finding rotational symmetries by cyclic string matching Type Journal Article
  Year 1997 Publication Pattern recognition letters Abbreviated Journal PRL  
  Volume 18 Issue 14 Pages 1435-1442  
  Keywords Rotational symmetry; Reflectional symmetry; String matching  
  Abstract Symmetry is an important shape feature. In this paper, a simple and fast method to detect perfect and distorted rotational symmetries of 2D objects is described. The boundary of a shape is polygonally approximated and represented as a string. Rotational symmetries are found by cyclic string matching between two identical copies of the shape string. The set of minimum cost edit sequences that transform the shape string to a cyclically shifted version of itself define the rotational symmetry and its order. Finally, a modification of the algorithm is proposed to detect reflectional symmetries. Some experimental results are presented to show the reliability of the proposed algorithm  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ LBM1997a Serial 1562  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: