|
Records |
Links |
|
Author |
Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados |
|
|
Title |
Spotting Graphical Symbols in Camera-Acquired Documents in Real Time |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Graphics Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
8746 |
Issue |
|
Pages |
3-10 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
Bart Lamiroy; Jean-Marc Ogier |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-662-44853-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.055; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKL2014 |
Serial |
2700 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; V. Poulain d'Andecy; Dimosthenis Karatzas; Josep Llados |
|
|
Title |
Classification of Administrative Document Images by Logo Identification |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Graphics Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
8746 |
Issue |
|
Pages |
49-58 |
|
|
Keywords |
Administrative Document Classification; Logo Recognition; Logo Spotting |
|
|
Abstract |
This paper is focused on the categorization of administrative document images (such as invoices) based on the recognition of the supplier’s graphical logo. Two different methods are proposed, the first one uses a bag-of-visual-words model whereas the second one tries to locate logo images described by the blurred shape model descriptor within documents by a sliding-window technique. Preliminar results are reported with a dataset of real administrative documents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
Bart Lamiroy; Jean-Marc Ogier |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-662-44853-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.056; 600.045; 605.203; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RPK2014 |
Serial |
2701 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh; Ernest Valveny |
|
|
Title |
Query by String word spotting based on character bi-gram indexing |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
881-885 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GhV2015a |
Serial |
2715 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh; Ernest Valveny |
|
|
Title |
A Sliding Window Framework for Word Spotting Based on Word Attributes |
Type |
Conference Article |
|
Year |
2015 |
Publication |
Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 |
Abbreviated Journal |
|
|
|
Volume |
9117 |
Issue |
|
Pages |
652-661 |
|
|
Keywords |
Word spotting; Sliding window; Word attributes |
|
|
Abstract |
In this paper we propose a segmentation-free approach to word spotting. Word images are first encoded into feature vectors using Fisher Vector. Then, these feature vectors are used together with pyramidal histogram of characters labels (PHOC) to learn SVM-based attribute models. Documents are represented by these PHOC based word attributes. To efficiently compute the word attributes over a sliding window, we propose to use an integral image representation of the document using a simplified version of the attribute model. Finally we re-rank the top word candidates using the more discriminative full version of the word attributes. We show state-of-the-art results for segmentation-free query-by-example word spotting in single-writer and multi-writer standard datasets. |
|
|
Address |
Santiago de Compostela; June 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-19389-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GhV2015b |
Serial |
2716 |
|
Permanent link to this record |
|
|
|
|
Author |
R. Bertrand; Oriol Ramos Terrades; P. Gomez-Kramer; P. Franco; Jean-Marc Ogier |
|
|
Title |
A Conditional Random Field model for font forgery detection |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
576 - 580 |
|
|
Keywords |
|
|
|
Abstract |
Nowadays, document forgery is becoming a real issue. A large amount of documents that contain critical information as payment slips, invoices or contracts, are constantly subject to fraudster manipulation because of the lack of security regarding this kind of document. Previously, a system to detect fraudulent documents based on its intrinsic features has been presented. It was especially designed to retrieve copy-move forgery and imperfection due to fraudster manipulation. However, when a set of characters is not present in the original document, copy-move forgery is not feasible. Hence, the fraudster will use a text toolbox to add or modify information in the document by imitating the font or he will cut and paste characters from another document where the font properties are similar. This often results in font type errors. Thus, a clue to detect document forgery consists of finding characters, words or sentences in a document with font properties different from their surroundings. To this end, we present in this paper an automatic forgery detection method based on document font features. Using the Conditional Random Field a measurement of probability that a character belongs to a specific font is made by comparing the character font features to a knowledge database. Then, the character is classified as a genuine or a fake one by comparing its probability to belong to a certain font type with those of the neighboring characters. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRG2015 |
Serial |
2725 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados; David Fernandez; Cristina Cañero |
|
|
Title |
Use case visual Bag-of-Words techniques for camera based identity document classification |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
721 - 725 |
|
|
Keywords |
|
|
|
Abstract |
Nowadays, automatic identity document recognition, including passport and driving license recognition, is at the core of many applications within the administrative and service sectors, such as police, hospitality, car renting, etc. In former years, the document information was manually extracted whereas today this data is recognized automatically from images obtained by flat-bed scanners. Yet, since these scanners tend to be expensive and voluminous, companies in the sector have recently turned their attention to cheaper, small and yet computationally powerful scanners: the mobile devices. The document identity recognition from mobile images enclose several new difficulties w.r.t traditional scanned images, such as the loss of a controlled background, perspective, blurring, etc. In this paper we present a real application for identity document classification of images taken from mobile devices. This classification process is of extreme importance since a prior knowledge of the document type and origin strongly facilitates the subsequent information extraction. The proposed method is based on a traditional Bagof-Words in which we have taken into consideration several key aspects to enhance recognition rate. The method performance has been studied on three datasets containing more than 2000 images from 129 different document classes. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.061; |
Approved |
no |
|
|
Call Number |
Admin @ si @ HRL2015a |
Serial |
2726 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
Attributed Graph Grammar for floor plan analysis |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
726 - 730 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose the use of an Attributed Graph Grammar as unique framework to model and recognize the structure of floor plans. This grammar represents a building as a hierarchical composition of structurally and semantically related elements, where common representations are learned stochastically from annotated data. Given an input image, the parsing consists on constructing that graph representation that better agrees with the probabilistic model defined by the grammar. The proposed method provides several advantages with respect to the traditional floor plan analysis techniques. It uses an unsupervised statistical approach for detecting walls that adapts to different graphical notations and relaxes strong structural assumptions such are straightness and orthogonality. Moreover, the independence between the knowledge model and the parsing implementation allows the method to learn automatically different building configurations and thus, to cope the existing variability. These advantages are clearly demonstrated by comparing it with the most recent floor plan interpretation techniques on 4 datasets of real floor plans with different notations. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HRL2015b |
Serial |
2727 |
|
Permanent link to this record |
|
|
|
|
Author |
Carlos David Martinez Hinarejos; Josep Llados; Alicia Fornes; Francisco Casacuberta; Lluis de Las Heras; Joan Mas; Moises Pastor; Oriol Ramos Terrades; Joan Andreu Sanchez; Enrique Vidal; Fernando Vilariño |
|
|
Title |
Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project |
Type |
Conference Article |
|
Year |
2016 |
Publication |
3rd IberSPEECH |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus. |
|
|
Address |
Lisboa; Portugal; November 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IberSPEECH |
|
|
Notes |
DAG; MV; 600.097;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @MLF2016 |
Serial |
2813 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Mas; Alicia Fornes; Josep Llados |
|
|
Title |
An Interactive Transcription System of Census Records using Word-Spotting based Information Transfer |
Type |
Conference Article |
|
Year |
2016 |
Publication |
12th IAPR Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
54-59 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a system to assist in the transcription of historical handwritten census records in a crowdsourcing platform. Census records have a tabular structured layout. They consist in a sequence of rows with information of homes ordered by street address. For each household snippet in the page, the list of family members is reported. The censuses are recorded in intervals of a few years and the information of individuals in each household is quite stable from a point in time to the next one. This redundancy is used to assist the transcriber, so the redundant information is transferred from the census already transcribed to the next one. Household records are aligned from one year to the next one using the knowledge of the ordering by street address. Given an already transcribed census, a query by string word spotting is applied. Thus, names from the census in time t are used as queries in the corresponding home record in time t+1. Since the search is constrained, the obtained precision-recall values are very high, with an important reduction in the transcription time. The proposed system has been tested in a real citizen-science experience where non expert users transcribe the census data of their home town. |
|
|
Address |
Santorini; Greece; April 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 603.053; 602.006; 600.061; 600.077; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MFL2016 |
Serial |
2751 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Ignacio Toledo; Alicia Fornes; Jordi Cucurull; Josep Llados |
|
|
Title |
Election Tally Sheets Processing System |
Type |
Conference Article |
|
Year |
2016 |
Publication |
12th IAPR Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
364-368 |
|
|
Keywords |
|
|
|
Abstract |
In paper based elections, manual tallies at polling station level produce myriads of documents. These documents share a common form-like structure and a reduced vocabulary worldwide. On the other hand, each tally sheet is filled by a different writer and on different countries, different scripts are used. We present a complete document analysis system for electoral tally sheet processing combining state of the art techniques with a new handwriting recognition subprocess based on unsupervised feature discovery with Variational Autoencoders and sequence classification with BLSTM neural networks. The whole system is designed to be script independent and allows a fast and reliable results consolidation process with reduced operational cost. |
|
|
Address |
Santorini; Greece; April 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 602.006; 600.061; 601.225; 600.077; 600.097 |
Approved |
no |
|
|
Call Number |
TFC2016 |
Serial |
2752 |
|
Permanent link to this record |