toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Yipeng Sun; Zihan Ni; Chee-Kheng Chng; Yuliang Liu; Canjie Luo; Chun Chet Ng; Junyu Han; Errui Ding; Jingtuo Liu; Dimosthenis Karatzas; Chee Seng Chan; Lianwen Jin edit   pdf
url  doi
openurl 
  Title ICDAR 2019 Competition on Large-Scale Street View Text with Partial Labeling – RRC-LSVT Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1557-1562  
  Keywords  
  Abstract Robust text reading from street view images provides valuable information for various applications. Performance improvement of existing methods in such a challenging scenario heavily relies on the amount of fully annotated training data, which is costly and in-efficient to obtain. To scale up the amount of training data while keeping the labeling procedure cost-effective, this competition introduces a new challenge on Large-scale Street View Text with Partial Labeling (LSVT), providing 50, 000 and 400, 000 images in full and weak annotations, respectively. This competition aims to explore the abilities of state-of-the-art methods to detect and recognize text instances from large-scale street view images, closing the gap between research benchmarks and real applications. During the competition period, a total of 41 teams participated in the two proposed tasks with 132 valid submissions, ie, text detection and end-to-end text spotting. This paper includes dataset descriptions, task definitions, evaluation protocols and results summaries of the ICDAR 2019-LSVT challenge.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129; 600.121 Approved no  
  Call Number Admin @ si @ SNC2019 Serial 3339  
Permanent link to this record
 

 
Author Chee-Kheng Chng; Yuliang Liu; Yipeng Sun; Chun Chet Ng; Canjie Luo; Zihan Ni; ChuanMing Fang; Shuaitao Zhang; Junyu Han; Errui Ding; Jingtuo Liu; Dimosthenis Karatzas; Chee Seng Chan; Lianwen Jin edit   pdf
url  doi
openurl 
  Title ICDAR2019 Robust Reading Challenge on Arbitrary-Shaped Text – RRC-ArT Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1571-1576  
  Keywords  
  Abstract This paper reports the ICDAR2019 Robust Reading Challenge on Arbitrary-Shaped Text – RRC-ArT that consists of three major challenges: i) scene text detection, ii) scene text recognition, and iii) scene text spotting. A total of 78 submissions from 46 unique teams/individuals were received for this competition. The top performing score of each challenge is as follows: i) T1 – 82.65%, ii) T2.1 – 74.3%, iii) T2.2 – 85.32%, iv) T3.1 – 53.86%, and v) T3.2 – 54.91%. Apart from the results, this paper also details the ArT dataset, tasks description, evaluation metrics and participants' methods. The dataset, the evaluation kit as well as the results are publicly available at the challenge website.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ CLS2019 Serial 3340  
Permanent link to this record
 

 
Author Nibal Nayef; Yash Patel; Michal Busta; Pinaki Nath Chowdhury; Dimosthenis Karatzas; Wafa Khlif; Jiri Matas; Umapada Pal; Jean-Christophe Burie; Cheng-lin Liu; Jean-Marc Ogier edit   pdf
url  doi
openurl 
  Title ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and Recognition — RRC-MLT-2019 Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1582-1587  
  Keywords  
  Abstract With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and push the state-of-the-art forward, the proposed competition builds on top of the RRC-MLT-2017 with an additional end-to-end task, an additional language in the real images dataset, a large scale multi-lingual synthetic dataset to assist the training, and a baseline End-to-End recognition method. The real dataset consists of 20,000 images containing text from 10 languages. The challenge has 4 tasks covering various aspects of multi-lingual scene text: (a) text detection, (b) cropped word script classification, (c) joint text detection and script classification and (d) end-to-end detection and recognition. In total, the competition received 60 submissions from the research and industrial communities. This paper presents the dataset, the tasks and the findings of the presented RRC-MLT-2019 challenge.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NPB2019 Serial 3341  
Permanent link to this record
 

 
Author Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
url  openurl
  Title Fast: Facilitated and accurate scene text proposals through fcn guided pruning Type Journal Article
  Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 119 Issue Pages 112-120  
  Keywords  
  Abstract Class-specific text proposal algorithms can efficiently reduce the search space for possible text object locations in an image. In this paper we combine the Text Proposals algorithm with Fully Convolutional Networks to efficiently reduce the number of proposals while maintaining the same recall level and thus gaining a significant speed up. Our experiments demonstrate that such text proposal approaches yield significantly higher recall rates than state-of-the-art text localization techniques, while also producing better-quality localizations. Our results on the ICDAR 2015 Robust Reading Competition (Challenge 4) and the COCO-text datasets show that, when combined with strong word classifiers, this recall margin leads to state-of-the-art results in end-to-end scene text recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ BGN2019 Serial 3342  
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Mauricio Villegas; Alicia Fornes; Marçal Rusiñol edit   pdf
url  openurl
  Title Candidate Fusion: Integrating Language Modelling into a Sequence-to-Sequence Handwritten Word Recognition Architecture Type Journal Article
  Year 2021 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 112 Issue Pages 107790  
  Keywords  
  Abstract Sequence-to-sequence models have recently become very popular for tackling
handwritten word recognition problems. However, how to effectively integrate an external language model into such recognizer is still a challenging
problem. The main challenge faced when training a language model is to
deal with the language model corpus which is usually different to the one
used for training the handwritten word recognition system. Thus, the bias
between both word corpora leads to incorrectness on the transcriptions, providing similar or even worse performances on the recognition task. In this
work, we introduce Candidate Fusion, a novel way to integrate an external
language model to a sequence-to-sequence architecture. Moreover, it provides suggestions from an external language knowledge, as a new input to
the sequence-to-sequence recognizer. Hence, Candidate Fusion provides two
improvements. On the one hand, the sequence-to-sequence recognizer has
the flexibility not only to combine the information from itself and the language model, but also to choose the importance of the information provided
by the language model. On the other hand, the external language model
has the ability to adapt itself to the training corpus and even learn the
most commonly errors produced from the recognizer. Finally, by conducting
comprehensive experiments, the Candidate Fusion proves to outperform the
state-of-the-art language models for handwritten word recognition tasks.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 601.302; 601.312; 600.121 Approved no  
  Call Number Admin @ si @ KRV2021 Serial 3343  
Permanent link to this record
 

 
Author Arnau Baro; Alicia Fornes; Carles Badal edit   pdf
openurl 
  Title Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism Type Conference Article
  Year 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.  
  Address Virtual ICFHR; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BFB2020 Serial 3448  
Permanent link to this record
 

 
Author Beata Megyesi; Bernhard Esslinger; Alicia Fornes; Nils Kopal; Benedek Lang; George Lasry; Karl de Leeuw; Eva Pettersson; Arno Wacker; Michelle Waldispuhl edit  url
openurl 
  Title Decryption of historical manuscripts: the DECRYPT project Type Journal Article
  Year 2020 Publication Cryptologia Abbreviated Journal CRYPT  
  Volume 44 Issue 6 Pages 545-559  
  Keywords automatic decryption; cipher collection; historical cryptology; image transcription  
  Abstract Many historians and linguists are working individually and in an uncoordinated fashion on the identification and decryption of historical ciphers. This is a time-consuming process as they often work without access to automatic methods and processes that can accelerate the decipherment. At the same time, computer scientists and cryptologists are developing algorithms to decrypt various cipher types without having access to a large number of original ciphertexts. In this paper, we describe the DECRYPT project aiming at the creation of resources and tools for historical cryptology by bringing the expertise of various disciplines together for collecting data, exchanging methods for faster progress to transcribe, decrypt and contextualize historical encrypted manuscripts. We present our goals and work-in progress of a general approach for analyzing historical encrypted manuscripts using standardized methods and a new set of state-of-the-art tools. We release the data and tools as open-source hoping that all mentioned disciplines would benefit and contribute to the research infrastructure of historical cryptology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ MEF2020 Serial 3347  
Permanent link to this record
 

 
Author Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes edit   pdf
url  openurl
  Title Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition Type Journal Article
  Year 2020 Publication Neural Computing and Applications Abbreviated Journal NEUCOMA  
  Volume 32 Issue Pages 11579–11596  
  Keywords  
  Abstract Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121; 600.141 Approved no  
  Call Number Admin @ si @ DRL2020 Serial 3348  
Permanent link to this record
 

 
Author Pau Riba; Josep Llados; Alicia Fornes edit  url
openurl 
  Title Hierarchical graphs for coarse-to-fine error tolerant matching Type Journal Article
  Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 134 Issue Pages 116-124  
  Keywords Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval  
  Abstract During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.302; 603.057; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ RLF2020 Serial 3349  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Joana Maria Pujadas-Mora edit  url
isbn  openurl
  Title Browsing of the Social Network of the Past: Information Extraction from Population Manuscript Images Type Book Chapter
  Year 2020 Publication Handwritten Historical Document Analysis, Recognition, and Retrieval – State of the Art and Future Trends Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Scientific Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-981-120-323-7 Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ FLP2020 Serial 3350  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: